BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18274702)

  • 1. Characteristics of leaf photosynthesis and simulated individual carbon budget in Primula nutans under contrasting light and temperature conditions.
    Shen H; Tang Y; Muraoka H; Washitani I
    J Plant Res; 2008 Mar; 121(2):191-200. PubMed ID: 18274702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological plasticity of Primula nutans to hummock-and-hollow microsites in an alpine wetland.
    Shen H; Tang Y; Washitani I
    J Plant Res; 2006 May; 119(3):257-64. PubMed ID: 16570124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.
    Posada JM; Sievänen R; Messier C; Perttunen J; Nikinmaa E; Lechowicz MJ
    Ann Bot; 2012 Aug; 110(3):731-41. PubMed ID: 22665700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Winter photosynthetic activity of twenty temperate semi-desert sand grassland species.
    Tuba Z; Csintalan Z; Szente K; Nagy Z; Fekete G; Larcher W; Lichtenthaler HK
    J Plant Physiol; 2008 Sep; 165(14):1438-54. PubMed ID: 18346813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.
    Wang B; Jin H; Li Q; Chen D; Zhao L; Tang Y; Kato T; Gu S
    PLoS One; 2017; 12(1):e0170963. PubMed ID: 28129406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of leaf-level spatial variability in photosynthetic capacity on biochemical parameter estimates using the Farquhar model: a theoretical analysis.
    Chen CP; Zhu XG; Long SP
    Plant Physiol; 2008 Oct; 148(2):1139-47. PubMed ID: 18715955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
    Chandra S; Lata H; Khan IA; Elsohly MA
    Physiol Mol Biol Plants; 2008 Oct; 14(4):299-306. PubMed ID: 23572895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature.
    Stroch M; Vrábl D; Podolinská J; Kalina J; Urban O; Spunda V
    J Plant Physiol; 2010 May; 167(8):597-605. PubMed ID: 20060196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelationships among light, photosynthesis and nitrogen in the crown of mature Pinus contorta ssp. latifolia.
    Schoettle AW; Smith WK
    Tree Physiol; 1999 Jan; 19(1):13-22. PubMed ID: 12651327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.
    Rodríguez-Calcerrada J; Limousin JM; Martin-StPaul NK; Jaeger C; Rambal S
    Tree Physiol; 2012 Apr; 32(4):464-77. PubMed ID: 22491489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.
    Xu CY; Salih A; Ghannoum O; Tissue DT
    J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest.
    Huxman TE; Turnipseed AA; Sparks JP; Harley PC; Monson RK
    Oecologia; 2003 Mar; 134(4):537-46. PubMed ID: 12647126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.
    Zhu XG; Ort DR; Whitmarsh J; Long SP
    J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?
    Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F
    Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.
    Pärnik T; Ivanova H; Keerberg O; Vardja R; Niinemets U
    Tree Physiol; 2014 Jun; 34(6):585-94. PubMed ID: 24898219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The responses of photosynthesis to strong light in the medicinal plants Anisodus tanguticus (Maxim.) Pascher and Rheum tanguticum Maxim. on the Qinghai-Tibet Plateau].
    Shi SB; Wang XY; Li HM; Han F
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Jun; 32(3):387-94. PubMed ID: 16775410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.