These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Aguilar-Arnal L; Sassone-Corsi P Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6863-70. PubMed ID: 25378702 [TBL] [Abstract][Full Text] [Related]
43. Circadian Clock Control of Liver Metabolic Functions. Reinke H; Asher G Gastroenterology; 2016 Mar; 150(3):574-80. PubMed ID: 26657326 [TBL] [Abstract][Full Text] [Related]
44. Involvement of circadian clock gene Clock in diabetes-induced circadian augmentation of plasminogen activator inhibitor-1 (PAI-1) expression in the mouse heart. Oishi K; Ohkura N; Amagai N; Ishida N FEBS Lett; 2005 Jul; 579(17):3555-9. PubMed ID: 15950223 [TBL] [Abstract][Full Text] [Related]
45. Extensive and divergent circadian gene expression in liver and heart. Storch KF; Lipan O; Leykin I; Viswanathan N; Davis FC; Wong WH; Weitz CJ Nature; 2002 May; 417(6884):78-83. PubMed ID: 11967526 [TBL] [Abstract][Full Text] [Related]
46. Circadian Regulation of Cardiac Physiology: Rhythms That Keep the Heart Beating. Zhang J; Chatham JC; Young ME Annu Rev Physiol; 2020 Feb; 82():79-101. PubMed ID: 31589825 [TBL] [Abstract][Full Text] [Related]
47. Impact of circadian time of dosing on cardiomyocyte-autonomous effects of glucocorticoids. Wintzinger M; Panta M; Miz K; Prabakaran AD; Durumutla HB; Sargent M; Peek CB; Bass J; Molkentin JD; Quattrocelli M Mol Metab; 2022 Aug; 62():101528. PubMed ID: 35717025 [TBL] [Abstract][Full Text] [Related]
48. [Research advances in relationship between biological clock and cardiovascular diseases]. Jiang TT; Ji S; Yang GR; Chen LH Sheng Li Xue Bao; 2019 Oct; 71(5):783-791. PubMed ID: 31646332 [TBL] [Abstract][Full Text] [Related]
49. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Carley AN; Taegtmeyer H; Lewandowski ED Circ Res; 2014 Feb; 114(4):717-29. PubMed ID: 24526677 [TBL] [Abstract][Full Text] [Related]
50. The Cardiac Circadian Clock: Implications for Cardiovascular Disease and its Treatment. Young ME JACC Basic Transl Sci; 2023 Dec; 8(12):1613-1628. PubMed ID: 38205356 [TBL] [Abstract][Full Text] [Related]
51. Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Zvonic S; Floyd ZE; Mynatt RL; Gimble JM Obesity (Silver Spring); 2007 Mar; 15(3):539-43. PubMed ID: 17372301 [TBL] [Abstract][Full Text] [Related]
52. Circadian Governance of Cardiac Growth. Latimer MN; Young ME Cells; 2022 Apr; 11(9):. PubMed ID: 35563800 [TBL] [Abstract][Full Text] [Related]
53. Dissipative structures and biological rhythms. Goldbeter A Chaos; 2017 Oct; 27(10):104612. PubMed ID: 29092409 [TBL] [Abstract][Full Text] [Related]
54. The Arabidopsis Circadian Clock and Metabolic Energy: A Question of Time. Cervela-Cardona L; Alary B; Mas P Front Plant Sci; 2021; 12():804468. PubMed ID: 34956299 [TBL] [Abstract][Full Text] [Related]
55. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Picca A; Mankowski RT; Burman JL; Donisi L; Kim JS; Marzetti E; Leeuwenburgh C Nat Rev Cardiol; 2018 Sep; 15(9):543-554. PubMed ID: 30042431 [TBL] [Abstract][Full Text] [Related]
56. Circadian models of serum potassium, sodium, and calcium concentrations in healthy individuals and their application to cardiac electrophysiology simulations at individual level. Fijorek K; Puskulluoglu M; Polak S Comput Math Methods Med; 2013; 2013():429037. PubMed ID: 24078832 [TBL] [Abstract][Full Text] [Related]
57. What yeast and cardiomyocytes share: ultradian oscillatory redox mechanisms of cellular coherence and survival. Lloyd D; Cortassa S; O'Rourke B; Aon MA Integr Biol (Camb); 2012 Jan; 4(1):65-74. PubMed ID: 22143867 [TBL] [Abstract][Full Text] [Related]