These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 18275098)
1. Bacterial selectivity and plausible mode of antibacterial action of designed Pro-rich short model antimicrobial peptides. Park KH; Park Y; Park IS; Hahm KS; Shin SY J Pept Sci; 2008 Jul; 14(7):876-82. PubMed ID: 18275098 [TBL] [Abstract][Full Text] [Related]
2. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Zhu WL; Hahm KS; Shin SY J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552 [TBL] [Abstract][Full Text] [Related]
3. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217 [TBL] [Abstract][Full Text] [Related]
4. Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Nan YH; Bang JK; Shin SY Peptides; 2009 May; 30(5):832-8. PubMed ID: 19428758 [TBL] [Abstract][Full Text] [Related]
5. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907 [TBL] [Abstract][Full Text] [Related]
6. The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide. Lim SS; Kim Y; Park Y; Kim JI; Park IS; Hahm KS; Shin SY Biochem Biophys Res Commun; 2005 Sep; 334(4):1329-35. PubMed ID: 16040002 [TBL] [Abstract][Full Text] [Related]
7. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. Yang ST; Lee JY; Kim HJ; Eu YJ; Shin SY; Hahm KS; Kim JI FEBS J; 2006 Sep; 273(17):4040-54. PubMed ID: 16889633 [TBL] [Abstract][Full Text] [Related]
8. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Park KH; Nan YH; Park Y; Kim JI; Park IS; Hahm KS; Shin SY Biochim Biophys Acta; 2009 May; 1788(5):1193-203. PubMed ID: 19285481 [TBL] [Abstract][Full Text] [Related]
9. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Yang ST; Shin SY; Hahm KS; Kim JI Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Wang P; Bang JK; Kim HJ; Kim JK; Kim Y; Shin SY Peptides; 2009 Dec; 30(12):2144-9. PubMed ID: 19778562 [TBL] [Abstract][Full Text] [Related]
11. Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. Zhu WL; Shin SY J Pept Sci; 2009 May; 15(5):345-52. PubMed ID: 19206074 [TBL] [Abstract][Full Text] [Related]
12. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Zhu WL; Lan H; Park IS; Kim JI; Jin HZ; Hahm KS; Shin SY Biochem Biophys Res Commun; 2006 Oct; 349(2):769-74. PubMed ID: 16945333 [TBL] [Abstract][Full Text] [Related]
13. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. Shin S; Kim JK; Lee JY; Jung KW; Hwang JS; Lee J; Lee DG; Kim I; Shin SY; Kim Y J Pept Sci; 2009 Sep; 15(9):559-68. PubMed ID: 19598182 [TBL] [Abstract][Full Text] [Related]
14. Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. Zhu WL; Hahm KS; Shin SY J Pept Sci; 2007 Aug; 13(8):529-35. PubMed ID: 17604338 [TBL] [Abstract][Full Text] [Related]
15. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Chou HT; Wen HW; Kuo TY; Lin CC; Chen WJ Peptides; 2010 Oct; 31(10):1811-20. PubMed ID: 20600422 [TBL] [Abstract][Full Text] [Related]
16. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
17. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Malina A; Shai Y Biochem J; 2005 Sep; 390(Pt 3):695-702. PubMed ID: 15907192 [TBL] [Abstract][Full Text] [Related]
18. Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. Staubitz P; Peschel A; Nieuwenhuizen WF; Otto M; Götz F; Jung G; Jack RW J Pept Sci; 2001 Oct; 7(10):552-64. PubMed ID: 11695650 [TBL] [Abstract][Full Text] [Related]
19. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related]
20. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Glukhov E; Burrows LL; Deber CM Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]