These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18275175)

  • 21. Reduction of chemical reaction networks using quasi-integrals.
    Straube R; Flockerzi D; Müller SC; Hauser MJ
    J Phys Chem A; 2005 Jan; 109(3):441-50. PubMed ID: 16833364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.
    Knabe JF; Nehaniv CL; Schilstra MJ
    Biosystems; 2008; 94(1-2):68-74. PubMed ID: 18611431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Petri net approach to the study of persistence in chemical reaction networks.
    Angeli D; De Leenheer P; Sontag ED
    Math Biosci; 2007 Dec; 210(2):598-618. PubMed ID: 17869313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstructing biochemical pathways from time course data.
    Srividhya J; Crampin EJ; McSharry PE; Schnell S
    Proteomics; 2007 Mar; 7(6):828-38. PubMed ID: 17370261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. List-decoding methods for inferring polynomials in finite dynamical gene network models.
    Dingel J; Milenkovic O
    Bioinformatics; 2009 Jul; 25(13):1686-93. PubMed ID: 19401400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized binomial tau-leap method for biochemical kinetics incorporating both delay and intrinsic noise.
    Leier A; Marquez-Lago TT; Burrage K
    J Chem Phys; 2008 May; 128(20):205107. PubMed ID: 18513050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics.
    Lebiedz D
    J Chem Phys; 2004 Apr; 120(15):6890-7. PubMed ID: 15267587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
    Ramaswamy R; González-Segredo N; Sbalzarini IF
    J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior.
    Lebiedz D; Brandt-Pollmann U
    Chaos; 2004 Sep; 14(3):611-6. PubMed ID: 15446971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A synthon approach to artificial chemistry.
    Lenaerts T; Bersini H
    Artif Life; 2009; 15(1):89-103. PubMed ID: 18855566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic network inference as a series of discrimination tasks.
    Kimura S; Nakayama S; Hatakeyama M
    Bioinformatics; 2009 Apr; 25(7):918-25. PubMed ID: 19189976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient stochastic sampling of first-passage times with applications to self-assembly simulations.
    Misra N; Schwartz R
    J Chem Phys; 2008 Nov; 129(20):204109. PubMed ID: 19045854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new model for investigating the evolution of transcription control networks.
    Jenkins DJ; Stekel DJ
    Artif Life; 2009; 15(3):259-91. PubMed ID: 19254178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial reduction algorithm for atmospheric chemical transport models.
    Rastigejev Y; Brenner MP; Jacob DJ
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):13875-80. PubMed ID: 17715302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-correcting networks: function, robustness, and motif distributions in biological signal processing.
    Kaluza P; Vingron M; Mikhailov AS
    Chaos; 2008 Jun; 18(2):026113. PubMed ID: 18601515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exact results for noise power spectra in linear biochemical reaction networks.
    Warren PB; Tănase-Nicola S; ten Wolde PR
    J Chem Phys; 2006 Oct; 125(14):144904. PubMed ID: 17042647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse engineering of gene networks with LASSO and nonlinear basis functions.
    Gustafsson M; Hörnquist M; Lundström J; Björkegren J; Tegnér J
    Ann N Y Acad Sci; 2009 Mar; 1158():265-75. PubMed ID: 19348648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling and analysis of the sugar cataract development process using stochastic hybrid systems.
    Riley D; Koutsoukos X; Riley K
    IET Syst Biol; 2009 May; 3(3):137-54. PubMed ID: 19449975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical organisation theory.
    Dittrich P; di Fenizio PS
    Bull Math Biol; 2007 May; 69(4):1199-231. PubMed ID: 17415616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic network identification using convex programming.
    Julius A; Zavlanos M; Boyd S; Pappas GJ
    IET Syst Biol; 2009 May; 3(3):155-66. PubMed ID: 19449976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.