These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 18275822)
1. Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Yang L; Song G; Carriquiry A; Jernigan RL Structure; 2008 Feb; 16(2):321-30. PubMed ID: 18275822 [TBL] [Abstract][Full Text] [Related]
2. Distance matrix-based approach to protein structure prediction. Kloczkowski A; Jernigan RL; Wu Z; Song G; Yang L; Kolinski A; Pokarowski P J Struct Funct Genomics; 2009 Mar; 10(1):67-81. PubMed ID: 19224393 [TBL] [Abstract][Full Text] [Related]
3. The use of experimental structures to model protein dynamics. Katebi AR; Sankar K; Jia K; Jernigan RL Methods Mol Biol; 2015; 1215():213-36. PubMed ID: 25330965 [TBL] [Abstract][Full Text] [Related]
4. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations. Kurt N; Scott WR; Schiffer CA; Haliloglu T Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052 [TBL] [Abstract][Full Text] [Related]
5. Conformational changes and allosteric communications in human serum albumin due to ligand binding. Ahalawat N; Murarka RK J Biomol Struct Dyn; 2015; 33(10):2192-204. PubMed ID: 25495718 [TBL] [Abstract][Full Text] [Related]
6. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Caves LS; Evanseck JD; Karplus M Protein Sci; 1998 Mar; 7(3):649-66. PubMed ID: 9541397 [TBL] [Abstract][Full Text] [Related]
7. Elastic network models capture the motions apparent within ensembles of RNA structures. Zimmermann MT; Jernigan RL RNA; 2014 Jun; 20(6):792-804. PubMed ID: 24759093 [TBL] [Abstract][Full Text] [Related]
8. Exploring free energy landscapes of large conformational changes: molecular dynamics with excited normal modes. Costa MG; Batista PR; Bisch PM; Perahia D J Chem Theory Comput; 2015 Jun; 11(6):2755-67. PubMed ID: 26575568 [TBL] [Abstract][Full Text] [Related]
9. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility. Zoete V; Michielin O; Karplus M J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964 [TBL] [Abstract][Full Text] [Related]
10. An Efficient Timer and Sizer of Biomacromolecular Motions. Chan J; Takemura K; Lin HR; Chang KC; Chang YY; Joti Y; Kitao A; Yang LW Structure; 2020 Feb; 28(2):259-269.e8. PubMed ID: 31780433 [TBL] [Abstract][Full Text] [Related]
11. Protein promiscuity: drug resistance and native functions--HIV-1 case. Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167 [TBL] [Abstract][Full Text] [Related]
12. Exploring experimental sources of multiple protein conformations in structure-based drug design. Damm KL; Carlson HA J Am Chem Soc; 2007 Jul; 129(26):8225-35. PubMed ID: 17555316 [TBL] [Abstract][Full Text] [Related]
13. Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models. Sankar K; Mishra SK; Jernigan RL J Phys Chem B; 2018 May; 122(21):5409-5417. PubMed ID: 29376347 [TBL] [Abstract][Full Text] [Related]
14. Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Zhang Z; Pfaendtner J; Grafmüller A; Voth GA Biophys J; 2009 Oct; 97(8):2327-37. PubMed ID: 19843465 [TBL] [Abstract][Full Text] [Related]
15. Exploring the conformational landscapes of HIV protease structural ensembles using principal component analysis. Hassan S; Srikakulam SK; Chandramohan Y; Thangam M; Muthukumar S; Gayathri Devi PK; Hanna LE Proteins; 2018 Sep; 86(9):990-1000. PubMed ID: 30051500 [TBL] [Abstract][Full Text] [Related]
16. Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Yang LW; Eyal E; Bahar I; Kitao A Bioinformatics; 2009 Mar; 25(5):606-14. PubMed ID: 19147661 [TBL] [Abstract][Full Text] [Related]
17. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis. Cukier RI J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290 [TBL] [Abstract][Full Text] [Related]
18. Distributions of experimental protein structures on coarse-grained free energy landscapes. Sankar K; Liu J; Wang Y; Jernigan RL J Chem Phys; 2015 Dec; 143(24):243153. PubMed ID: 26723638 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism. Singh G; Senapati S Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756 [TBL] [Abstract][Full Text] [Related]
20. Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis--application to the HIV-1 protease. Batista PR; Robert CH; Maréchal JD; Hamida-Rebaï MB; Pascutti PG; Bisch PM; Perahia D Phys Chem Chem Phys; 2010 Mar; 12(12):2850-9. PubMed ID: 20449375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]