These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 18275822)
21. Conformations of the HIV-1 protease: A crystal structure data set analysis. Palese LL Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1416-1422. PubMed ID: 28846854 [TBL] [Abstract][Full Text] [Related]
22. A diverse view of protein dynamics from NMR studies of HIV-1 protease flaps. Ishima R; Louis JM Proteins; 2008 Mar; 70(4):1408-15. PubMed ID: 17894346 [TBL] [Abstract][Full Text] [Related]
23. Probing structure-function relationships in human immunodeficiency virus type 1 protease via molecular dynamics simulation. Harte WE; Beveridge DL Methods Enzymol; 1994; 241():178-95. PubMed ID: 7854178 [TBL] [Abstract][Full Text] [Related]
24. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Torbeev VY; Raghuraman H; Hamelberg D; Tonelli M; Westler WM; Perozo E; Kent SB Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20982-7. PubMed ID: 22158985 [TBL] [Abstract][Full Text] [Related]
25. Conformational variation of an extreme drug resistant mutant of HIV protease. Shen CH; Chang YC; Agniswamy J; Harrison RW; Weber IT J Mol Graph Model; 2015 Nov; 62():87-96. PubMed ID: 26397743 [TBL] [Abstract][Full Text] [Related]
26. Understanding protein flexibility through dimensionality reduction. Teodoro ML; Phillips GN; Kavraki LE J Comput Biol; 2003; 10(3-4):617-34. PubMed ID: 12935348 [TBL] [Abstract][Full Text] [Related]
27. Conformational dynamics of HIV-1 protease: a comparative molecular dynamics simulation study with multiple amber force fields. Meher BR; Kumar MV; Sharma S; Bandyopadhyay P J Bioinform Comput Biol; 2012 Dec; 10(6):1250018. PubMed ID: 22845837 [TBL] [Abstract][Full Text] [Related]
28. Molecular dynamics simulations and elastic network analysis of protein kinase B (Akt/PKB) inactivation. Cheng S; Niv MY J Chem Inf Model; 2010 Sep; 50(9):1602-10. PubMed ID: 20735046 [TBL] [Abstract][Full Text] [Related]
29. Dynamozones are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease. Rahimi M; Taghdir M; Abasi Joozdani F Sci Rep; 2023 Aug; 13(1):14179. PubMed ID: 37648682 [TBL] [Abstract][Full Text] [Related]
30. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Hornak V; Okur A; Rizzo RC; Simmerling C Proc Natl Acad Sci U S A; 2006 Jan; 103(4):915-20. PubMed ID: 16418268 [TBL] [Abstract][Full Text] [Related]
31. A method for biomolecular structural recognition and docking allowing conformational flexibility. Sandak B; Nussinov R; Wolfson HJ J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081 [TBL] [Abstract][Full Text] [Related]
32. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family. Friedland GD; Lakomek NA; Griesinger C; Meiler J; Kortemme T PLoS Comput Biol; 2009 May; 5(5):e1000393. PubMed ID: 19478996 [TBL] [Abstract][Full Text] [Related]
33. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations. Ringhofer S; Kallen J; Dutzler R; Billich A; Visser AJ; Scholz D; Steinhauser O; Schreiber H; Auer M; Kungl AJ J Mol Biol; 1999 Mar; 286(4):1147-59. PubMed ID: 10047488 [TBL] [Abstract][Full Text] [Related]
34. Exploring the dynamic information content of a protein NMR structure: comparison of a molecular dynamics simulation with the NMR and X-ray structures of Escherichia coli ribonuclease HI. Philippopoulos M; Lim C Proteins; 1999 Jul; 36(1):87-110. PubMed ID: 10373009 [TBL] [Abstract][Full Text] [Related]
35. Efficient molecular docking of NMR structures: application to HIV-1 protease. Huang SY; Zou X Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961 [TBL] [Abstract][Full Text] [Related]
36. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. Piana S; Carloni P; Parrinello M J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929 [TBL] [Abstract][Full Text] [Related]
37. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V; Okur A; Rizzo RC; Simmerling C J Am Chem Soc; 2006 Mar; 128(9):2812-3. PubMed ID: 16506755 [TBL] [Abstract][Full Text] [Related]
38. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions. Seibold SA; Cukier RI Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840 [TBL] [Abstract][Full Text] [Related]
39. On the relationship between docking scores and protein conformational changes in HIV-1 protease. Mobaraki N; Hemmateenejad B; Weikl TR; Sakhteman A J Mol Graph Model; 2019 Sep; 91():186-193. PubMed ID: 31261024 [TBL] [Abstract][Full Text] [Related]
40. Correlation between normal modes in the 20-200 cm-1 frequency range and localized torsion motions related to certain collective motions in proteins. Cao ZW; Chen X; Chen YZ J Mol Graph Model; 2003 Jan; 21(4):309-19. PubMed ID: 12479929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]