These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 18275859)
1. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts. Huo YY; Li G; Duan RF; Gou Q; Fu CL; Hu YC; Song BQ; Yang ZH; Wu DC; Zhou PK Free Radic Biol Med; 2008 Apr; 44(8):1578-91. PubMed ID: 18275859 [TBL] [Abstract][Full Text] [Related]
2. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Ouyang X; DeWeese TL; Nelson WG; Abate-Shen C Cancer Res; 2005 Aug; 65(15):6773-9. PubMed ID: 16061659 [TBL] [Abstract][Full Text] [Related]
3. [Pilot study of PTEN deletion affecting the expression of Cu/Zn SOD]. Yang L; Gou Q; Mi C Zhonghua Bing Li Xue Za Zhi; 2008 Jul; 37(7):477-80. PubMed ID: 19035120 [TBL] [Abstract][Full Text] [Related]
4. The protective effect of Cu/Zn-SOD against oxidative stress after PTEN deletion. Yu C; Wang P; Li S; Wang X; Yu Z; Wang Z Cancer Invest; 2011 May; 29(4):253-6. PubMed ID: 21345072 [TBL] [Abstract][Full Text] [Related]
5. Oxidative DNA damage causes premature senescence in mouse embryonic fibroblasts deficient for Krüppel-like factor 4. Liu C; La Rosa S; Hagos EG Mol Carcinog; 2015 Sep; 54(9):889-99. PubMed ID: 24788960 [TBL] [Abstract][Full Text] [Related]
6. Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice. Bankoglu EE; Tschopp O; Schmitt J; Burkard P; Jahn D; Geier A; Stopper H PLoS One; 2016; 11(11):e0166956. PubMed ID: 27893783 [TBL] [Abstract][Full Text] [Related]
7. Naturally occurring germline and tumor-associated mutations within the ATP-binding motifs of PTEN lead to oxidative damage of DNA associated with decreased nuclear p53. He X; Ni Y; Wang Y; Romigh T; Eng C Hum Mol Genet; 2011 Jan; 20(1):80-9. PubMed ID: 20926450 [TBL] [Abstract][Full Text] [Related]
8. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. Zhu H; Itoh K; Yamamoto M; Zweier JL; Li Y FEBS Lett; 2005 Jun; 579(14):3029-36. PubMed ID: 15896789 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species-dependent down-regulation of tumor suppressor genes PTEN, USP28, DRAM, TIGAR, and CYLD under oxidative stress. Kim SJ; Jung HJ; Lim CJ Biochem Genet; 2013 Dec; 51(11-12):901-15. PubMed ID: 23832602 [TBL] [Abstract][Full Text] [Related]
10. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Egler RA; Fernandes E; Rothermund K; Sereika S; de Souza-Pinto N; Jaruga P; Dizdaroglu M; Prochownik EV Oncogene; 2005 Dec; 24(54):8038-50. PubMed ID: 16170382 [TBL] [Abstract][Full Text] [Related]
11. Sesamol inhibits UVB-induced ROS generation and subsequent oxidative damage in cultured human skin dermal fibroblasts. Ramachandran S; Rajendra Prasad N; Karthikeyan S Arch Dermatol Res; 2010 Dec; 302(10):733-44. PubMed ID: 20697726 [TBL] [Abstract][Full Text] [Related]
12. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879 [TBL] [Abstract][Full Text] [Related]
13. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Hempel N; Melendez JA Redox Biol; 2014; 2():245-50. PubMed ID: 24494199 [TBL] [Abstract][Full Text] [Related]
14. Peroxiredoxin I plays a protective role against UVA irradiation through reduction of oxidative stress. Ito T; Kimura S; Seto K; Warabi E; Kawachi Y; Shoda J; Tabuchi K; Yamagata K; Hasegawa S; Bukawa H; Ishii T; Yanagawa T J Dermatol Sci; 2014 Apr; 74(1):9-17. PubMed ID: 24388414 [TBL] [Abstract][Full Text] [Related]
15. Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Bagnyukova TV; Powell CL; Pavliv O; Tryndyak VP; Pogribny IP Brain Res; 2008 Oct; 1237():44-51. PubMed ID: 18694737 [TBL] [Abstract][Full Text] [Related]
16. Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. Choi SI; Dadakhujaev S; Ryu H; Im Kim T; Kim EK J Pineal Res; 2011 Aug; 51(1):94-103. PubMed ID: 21392093 [TBL] [Abstract][Full Text] [Related]
17. Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes. Ran Q; Van Remmen H; Gu M; Qi W; Roberts LJ; Prolla T; Richardson A Free Radic Biol Med; 2003 Nov; 35(9):1101-9. PubMed ID: 14572612 [TBL] [Abstract][Full Text] [Related]
18. Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence. Park YH; Kim HS; Lee JH; Choi SA; Kim JM; Oh GT; Kang SW; Kim SU; Yu DY BMB Rep; 2017 Oct; 50(10):528-533. PubMed ID: 28893373 [TBL] [Abstract][Full Text] [Related]
19. Effects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium. Reddy VN; Kasahara E; Hiraoka M; Lin LR; Ho YS Exp Eye Res; 2004 Dec; 79(6):859-68. PubMed ID: 15642323 [TBL] [Abstract][Full Text] [Related]
20. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]