These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18276410)

  • 1. Sensitivity analysis of multilayer perceptron with differentiable activation functions.
    Choi JY; Choi CH
    IEEE Trans Neural Netw; 1992; 3(1):101-7. PubMed ID: 18276410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantified sensitivity measure for multilayer perceptron to input perturbation.
    Zeng X; Yeung DS
    Neural Comput; 2003 Jan; 15(1):183-212. PubMed ID: 12590825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis of multilayer perceptron to input and weight perturbations.
    Zeng X; Yeung DS
    IEEE Trans Neural Netw; 2001; 12(6):1358-66. PubMed ID: 18249965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using function approximation to analyze the sensitivity of MLP with antisymmetric squashing activation function.
    Yeung DS; Sun X
    IEEE Trans Neural Netw; 2002; 13(1):34-44. PubMed ID: 18244407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of madalines' sensitivity to input and weight perturbations.
    Wang Y; Zeng X; Yeung DS; Peng Z
    Neural Comput; 2006 Nov; 18(11):2854-77. PubMed ID: 16999581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing and analyzing the sensitivity of MLP due to the errors of the i.i.d. inputs and weights based on CLT.
    Yang SS; Ho CL; Siu S
    IEEE Trans Neural Netw; 2010 Dec; 21(12):1882-91. PubMed ID: 20923730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Output Reachable Set Estimation and Verification for Multilayer Neural Networks.
    Xiang W; Tran HD; Johnson TT
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5777-5783. PubMed ID: 29993822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer perceptron, fuzzy sets, and classification.
    Pal SK; Mitra S
    IEEE Trans Neural Netw; 1992; 3(5):683-97. PubMed ID: 18276468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conventional modeling of the multilayer perceptron using polynomial basis functions.
    Chen MS; Manry MT
    IEEE Trans Neural Netw; 1993; 4(1):164-6. PubMed ID: 18267718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep snoring detection using multi-layer neural networks.
    Nguyen TL; Won Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1749-55. PubMed ID: 26405943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery.
    Vaughn ML
    Neural Netw; 1999 Nov; 12(9):1259-1271. PubMed ID: 12662631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new measurement of noise immunity and generalization ability for MLPs.
    Bernier JL; Ortega J; Ros E; Rojas I; Prieto A
    Int J Neural Syst; 1999 Dec; 9(6):511-21. PubMed ID: 10651334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge-based fuzzy MLP for classification and rule generation.
    Mitra S; De RK; Pal SK
    IEEE Trans Neural Netw; 1997; 8(6):1338-50. PubMed ID: 18255736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron.
    Khadem A; Hossein-Zadeh GA
    J Neurosci Methods; 2014 May; 229():53-67. PubMed ID: 24751646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global convergence and limit cycle behavior of weights of perceptron.
    Ho CY; Ling BW; Lam HK; Nasir MH
    IEEE Trans Neural Netw; 2008 Jun; 19(6):938-47. PubMed ID: 18541495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximating Gaussian mixture model or radial basis function network with multilayer perceptron.
    Patrikar AM
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1161-6. PubMed ID: 24808530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic model for the fault tolerance of multilayer perceptrons.
    Merchawi NS; Kumara ST; Das CR
    IEEE Trans Neural Netw; 1996; 7(1):201-5. PubMed ID: 18255571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MLPNN Training via a Multiobjective Optimization of Training Error and Stochastic Sensitivity.
    Yeung DS; Li JC; Ng WW; Chan PP
    IEEE Trans Neural Netw Learn Syst; 2016 May; 27(5):978-92. PubMed ID: 26054075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection for MLP neural network: the use of random permutation of probabilistic outputs.
    Yang JB; Shen KQ; Ong CJ; Li XP
    IEEE Trans Neural Netw; 2009 Dec; 20(12):1911-22. PubMed ID: 19822474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.