These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18276410)
21. Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks. Geng C; Sun Q; Nakatake S Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751288 [TBL] [Abstract][Full Text] [Related]
22. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. Chen F; Chen G; He Q; He G; Xu X IEEE Trans Neural Netw; 2009 Aug; 20(8):1293-301. PubMed ID: 19589746 [TBL] [Abstract][Full Text] [Related]
23. Geometrical Interpretation and Design of Multilayer Perceptrons. Lin R; Zhou Z; You S; Rao R; Kuo CJ IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):2545-2559. PubMed ID: 35862331 [TBL] [Abstract][Full Text] [Related]
24. Fuzzy multi-layer perceptron, inferencing and rule generation. Mitra S; Pal SK IEEE Trans Neural Netw; 1995; 6(1):51-63. PubMed ID: 18263285 [TBL] [Abstract][Full Text] [Related]
25. Multilayer perceptrons: approximation order and necessary number of hidden units. Trenn S IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212 [TBL] [Abstract][Full Text] [Related]
26. Neural network tomography: network replication from output surface geometry. Minnett RC; Smith AT; Lennon WC; Hecht-Nielsen R Neural Netw; 2011 Jun; 24(5):484-92. PubMed ID: 21377326 [TBL] [Abstract][Full Text] [Related]
27. High-order and multilayer perceptron initialization. Thimm G; Fiesler E IEEE Trans Neural Netw; 1997; 8(2):349-59. PubMed ID: 18255638 [TBL] [Abstract][Full Text] [Related]
28. Multilayer perceptron-based DFE with lattice structure. Zerguine A; Shafi A; Bettayeb M IEEE Trans Neural Netw; 2001; 12(3):532-45. PubMed ID: 18249886 [TBL] [Abstract][Full Text] [Related]
30. Design and Application of a Variable Selection Method for Multilayer Perceptron Neural Network With LASSO. Sun K; Huang SH; Wong DS; Jang SS IEEE Trans Neural Netw Learn Syst; 2017 Jun; 28(6):1386-1396. PubMed ID: 28113826 [TBL] [Abstract][Full Text] [Related]
31. Hybrid Training Method for MLP: Optimization of Architecture and Training. Zanchettin C; Ludermir TB; Almeida LM IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):1097-109. PubMed ID: 21317085 [TBL] [Abstract][Full Text] [Related]
32. Neural network implementation using a single MOST per synapse. Johnson DE; Marsland JS; Eccleston W IEEE Trans Neural Netw; 1995; 6(4):1008-11. PubMed ID: 18263390 [TBL] [Abstract][Full Text] [Related]
33. DMP3: a dynamic multilayer perceptron construction algorithm. Andersen TL; Martinez TR Int J Neural Syst; 2001 Apr; 11(2):145-65. PubMed ID: 14632168 [TBL] [Abstract][Full Text] [Related]
34. Application of the recurrent multilayer perceptron in modeling complex process dynamics. Parlos AG; Chong KT; Atiya AF IEEE Trans Neural Netw; 1994; 5(2):255-66. PubMed ID: 18267795 [TBL] [Abstract][Full Text] [Related]
35. The recursive deterministic perceptron neural network. Tajine M; Elizondo D Neural Netw; 1998 Dec; 11(9):1571-1588. PubMed ID: 12662729 [TBL] [Abstract][Full Text] [Related]
36. A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. Wang GJ; Chen CC IEEE Trans Neural Netw; 1996; 7(3):768-75. PubMed ID: 18263473 [TBL] [Abstract][Full Text] [Related]
37. Sensitivity analysis of single hidden-layer neural networks with threshold functions. Oh SH; Lee Y IEEE Trans Neural Netw; 1995; 6(4):1005-7. PubMed ID: 18263389 [TBL] [Abstract][Full Text] [Related]
38. A quantitative study of fault tolerance, noise immunity, and generalization ability of MLPs. Bernier JL; Ortega J; Ros E; Rojas I; Prieto A Neural Comput; 2000 Dec; 12(12):2941-64. PubMed ID: 11112261 [TBL] [Abstract][Full Text] [Related]
39. Objective functions of online weight noise injection training algorithms for MLPs. Ho K; Leung CS; Sum J IEEE Trans Neural Netw; 2011 Feb; 22(2):317-23. PubMed ID: 21189237 [TBL] [Abstract][Full Text] [Related]
40. Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds. Murcia-Soler M; Pérez-Giménez F; García-March FJ; Salabert-Salvador MT; Díaz-Villanueva W; Castro-Bleda MJ; Villanueva-Pareja A J Chem Inf Comput Sci; 2004; 44(3):1031-41. PubMed ID: 15154772 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]