These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 18276416)
1. Predicting the number of contacts and dimensions of full-custom integrated circuit blocks using neural network techniques. Jabri MA; Li X IEEE Trans Neural Netw; 1992; 3(1):146-53. PubMed ID: 18276416 [TBL] [Abstract][Full Text] [Related]
2. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Fuchs A; Kirschner A; Frishman D Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938 [TBL] [Abstract][Full Text] [Related]
3. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Kaur H; Raghava GP Protein Sci; 2003 May; 12(5):923-9. PubMed ID: 12717015 [TBL] [Abstract][Full Text] [Related]
4. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. Lyons J; Dehzangi A; Heffernan R; Sharma A; Paliwal K; Sattar A; Zhou Y; Yang Y J Comput Chem; 2014 Oct; 35(28):2040-6. PubMed ID: 25212657 [TBL] [Abstract][Full Text] [Related]
5. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Lu Z; Jhoja J; Klein J; Wang X; Liu A; Flueckiger J; Pond J; Chrostowski L Opt Express; 2017 May; 25(9):9712-9733. PubMed ID: 28468352 [TBL] [Abstract][Full Text] [Related]
6. Linear regression models for solvent accessibility prediction in proteins. Wagner M; Adamczak R; Porollo A; Meller J J Comput Biol; 2005 Apr; 12(3):355-69. PubMed ID: 15857247 [TBL] [Abstract][Full Text] [Related]
7. Protein secondary structure prediction with SPARROW. Bettella F; Rasinski D; Knapp EW J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407 [TBL] [Abstract][Full Text] [Related]
8. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. Ma D; Zhang Z J Hazard Mater; 2016 Jul; 311():237-45. PubMed ID: 27035273 [TBL] [Abstract][Full Text] [Related]
9. Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: a probability bounds approach. Betrie GD; Sadiq R; Morin KA; Tesfamariam S Sci Total Environ; 2014 Aug; 490():182-90. PubMed ID: 24852616 [TBL] [Abstract][Full Text] [Related]
10. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
11. Design and training of a neural network for predicting the solvent accessibility of proteins. Ahmad S; Gromiha MM J Comput Chem; 2003 Aug; 24(11):1313-20. PubMed ID: 12827672 [TBL] [Abstract][Full Text] [Related]
12. [Relevance of nerve blocks in treating and diagnosing low back pain--is the quality decisive?]. Hildebrandt J Schmerz; 2001 Dec; 15(6):474-83. PubMed ID: 11793154 [TBL] [Abstract][Full Text] [Related]
13. Prediction of activity type in preschool children using machine learning techniques. Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983 [TBL] [Abstract][Full Text] [Related]
14. The impact of arithmetic representation on implementing MLP-BP on FPGAs: a study. Savich AW; Moussa M; Areibi S IEEE Trans Neural Netw; 2007 Jan; 18(1):240-52. PubMed ID: 17278475 [TBL] [Abstract][Full Text] [Related]
15. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. Doniger S; Hofmann T; Yeh J J Comput Biol; 2002; 9(6):849-64. PubMed ID: 12614551 [TBL] [Abstract][Full Text] [Related]
16. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Vuković N; Miljković Z Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384 [TBL] [Abstract][Full Text] [Related]
17. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning. Maheshwari S; Brylinski M J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369 [TBL] [Abstract][Full Text] [Related]
18. Contact prediction using mutual information and neural nets. Shackelford G; Karplus K Proteins; 2007; 69 Suppl 8():159-64. PubMed ID: 17932918 [TBL] [Abstract][Full Text] [Related]
19. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Kaur H; Raghava GP Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798 [TBL] [Abstract][Full Text] [Related]
20. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Tang YR; Chen YZ; Canchaya CA; Zhang Z Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]