These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18276521)

  • 1. Approximations of continuous functionals by neural networks with application to dynamic systems.
    Chen T; Chen H
    IEEE Trans Neural Netw; 1993; 4(6):910-8. PubMed ID: 18276521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems.
    Chen T; Chen H
    IEEE Trans Neural Netw; 1995; 6(4):911-7. PubMed ID: 18263379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructive function-approximation by three-layer artificial neural networks.
    Suzuki S
    Neural Netw; 1998 Aug; 11(6):1049-1058. PubMed ID: 12662774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the geometric convergence of neural approximations.
    Lavretsky E
    IEEE Trans Neural Netw; 2002; 13(2):274-82. PubMed ID: 18244430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network approximation of continuous functionals and continuous functions on compactifications.
    Stinchcombe MB
    Neural Netw; 1999 Apr; 12(3):467-477. PubMed ID: 12662689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified approach for neural network-like approximation of non-linear functionals.
    Chen T
    Neural Netw; 1998 Aug; 11(6):981-983. PubMed ID: 12662768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basis operator network: A neural network-based model for learning nonlinear operators via neural basis.
    Hua N; Lu W
    Neural Netw; 2023 Jul; 164():21-37. PubMed ID: 37146447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximation of nonlinear systems with radial basis function neural networks.
    Schilling RJ; Carroll JJ; Al-Ajlouni AF
    IEEE Trans Neural Netw; 2001; 12(1):1-15. PubMed ID: 18244359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence and uniqueness results for neural network approximations.
    Williamson RC; Helmke U
    IEEE Trans Neural Netw; 1995; 6(1):2-13. PubMed ID: 18263280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Single Hidden Layer Feedforward Network with Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function.
    Guliyev NJ; Ismailov VE
    Neural Comput; 2016 Jul; 28(7):1289-304. PubMed ID: 27171269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
    Petersen P; Voigtlaender F
    Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-hidden-layer feed-forward networks are universal approximators: A constructive approach.
    Paluzo-Hidalgo E; Gonzalez-Diaz R; GutiƩrrez-Naranjo MA
    Neural Netw; 2020 Nov; 131():29-36. PubMed ID: 32739651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete memory structures for approximating nonlinear discrete-time mappings.
    Stiles BW; Sandberg IW; Ghosh J
    IEEE Trans Neural Netw; 1997; 8(6):1397-409. PubMed ID: 18255742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous approximations of polynomials and derivatives and their applications to neural networks.
    Ito Y
    Neural Comput; 2008 Nov; 20(11):2757-91. PubMed ID: 18386987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic choice of basis functions in adaptive function approximation and the functional-link net.
    Igelnik B; Pao YH
    IEEE Trans Neural Netw; 1995; 6(6):1320-9. PubMed ID: 18263425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.
    Andras P
    IEEE Trans Neural Netw Learn Syst; 2018 Feb; 29(2):500-508. PubMed ID: 28129193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the optimality of neural-network approximation using incremental algorithms.
    Meir R; Maiorov VE
    IEEE Trans Neural Netw; 2000; 11(2):323-37. PubMed ID: 18249764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Richards's curve induced Banach space valued ordinary and fractional neural network approximation.
    Anastassiou GA; Karateke S
    Rev R Acad Cienc Exactas Fis Nat A Mat; 2023; 117(1):14. PubMed ID: 36373128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approximation bounds for smooth functions in C(IRd) by neural and mixture networks.
    Maiorov V; Meir RS
    IEEE Trans Neural Netw; 1998; 9(5):969-78. PubMed ID: 18255780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate sigmoidal neural network approximation.
    Anastassiou GA
    Neural Netw; 2011 May; 24(4):378-86. PubMed ID: 21310590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.