These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18276647)

  • 1. Predicting RNA-binding sites from the protein structure based on electrostatics, evolution and geometry.
    Chen YC; Lim C
    Nucleic Acids Res; 2008 Mar; 36(5):e29. PubMed ID: 18276647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting DNA-binding amino acid residues from electrostatic stabilization upon mutation to Asp/Glu and evolutionary conservation.
    Chen YC; Wu CY; Lim C
    Proteins; 2007 May; 67(3):671-80. PubMed ID: 17340633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying RNA-binding residues based on evolutionary conserved structural and energetic features.
    Chen YC; Sargsyan K; Wright JD; Huang YS; Lim C
    Nucleic Acids Res; 2014 Feb; 42(3):e15. PubMed ID: 24343026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Themes in RNA-protein recognition.
    Draper DE
    J Mol Biol; 1999 Oct; 293(2):255-70. PubMed ID: 10550207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DR_bind: a web server for predicting DNA-binding residues from the protein structure based on electrostatics, evolution and geometry.
    Chen YC; Wright JD; Lim C
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W249-56. PubMed ID: 22661576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-binding residues in sequence space: conservation and interaction patterns.
    Spriggs RV; Jones S
    Comput Biol Chem; 2009 Oct; 33(5):397-403. PubMed ID: 19700370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and prediction of RNA-binding residues using sequence, evolutionary conservation, and predicted secondary structure and solvent accessibility.
    Zhang T; Zhang H; Chen K; Ruan J; Shen S; Kurgan L
    Curr Protein Pept Sci; 2010 Nov; 11(7):609-28. PubMed ID: 20887256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.
    Miao Z; Westhof E
    Nucleic Acids Res; 2015 Jun; 43(11):5340-51. PubMed ID: 25940624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-binding residues prediction using structural features.
    Ren H; Shen Y
    BMC Bioinformatics; 2015 Aug; 16():249. PubMed ID: 26254826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA recognition by transcriptional antiterminators of the BglG/SacY family: mapping of SacY RNA binding site.
    Declerck N; Minh NL; Yang Y; Bloch V; Kochoyan M; Aymerich S
    J Mol Biol; 2002 Jun; 319(5):1035-48. PubMed ID: 12079345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into activation and RNA binding of trp RNA-binding attenuation protein (TRAP) through all-atom simulations.
    Murtola T; Vattulainen I; Falck E
    Proteins; 2008 Jun; 71(4):1995-2011. PubMed ID: 18186477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting nucleic acid binding interfaces from structural models of proteins.
    Dror I; Shazman S; Mukherjee S; Zhang Y; Glaser F; Mandel-Gutfreund Y
    Proteins; 2012 Feb; 80(2):482-9. PubMed ID: 22086767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based model for the prediction of protein-RNA binding affinity.
    Nithin C; Mukherjee S; Bahadur RP
    RNA; 2019 Dec; 25(12):1628-1645. PubMed ID: 31395671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyses on clustering of the conserved residues at protein-RNA interfaces and its application in binding site identification.
    Yang Z; Deng X; Liu Y; Gong W; Li C
    BMC Bioinformatics; 2020 Feb; 21(1):57. PubMed ID: 32066366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing binding hot spots at protein-RNA recognition sites.
    Barik A; Nithin C; Karampudi NB; Mukherjee S; Bahadur RP
    Nucleic Acids Res; 2016 Jan; 44(2):e9. PubMed ID: 26365245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the human U2B" protein complex with U2 snRNA hairpin IV in aqueous solution.
    Guo JX; Gmeiner WH
    Biophys J; 2001 Aug; 81(2):630-42. PubMed ID: 11463612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the RNA binding mechanism of human L1-ORF1p: a molecular dynamics study.
    Rajagopalan M; Balasubramanian S; Ramaswamy A
    Mol Biosyst; 2017 Aug; 13(9):1728-1743. PubMed ID: 28714502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change.
    Reyes CM; Kollman PA
    J Mol Biol; 2000 Apr; 297(5):1145-58. PubMed ID: 10764579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common physical basis of macromolecule-binding sites in proteins.
    Chen YC; Lim C
    Nucleic Acids Res; 2008 Dec; 36(22):7078-87. PubMed ID: 18988628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.