BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18276730)

  • 1. Glutamatergic transmission and plasticity between olfactory bulb mitral cells.
    Pimentel DO; Margrie TW
    J Physiol; 2008 Apr; 586(8):2107-19. PubMed ID: 18276730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral excitation within the olfactory bulb.
    Christie JM; Westbrook GL
    J Neurosci; 2006 Feb; 26(8):2269-77. PubMed ID: 16495454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disynaptic amplification of metabotropic glutamate receptor 1 responses in the olfactory bulb.
    De Saint Jan D; Westbrook GL
    J Neurosci; 2007 Jan; 27(1):132-40. PubMed ID: 17202480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals.
    Murphy GJ; Glickfeld LL; Balsen Z; Isaacson JS
    J Neurosci; 2004 Mar; 24(12):3023-30. PubMed ID: 15044541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term plasticity in glomerular inhibitory circuits shapes olfactory bulb output.
    Zhou FW; Shao ZY; Shipley MT; Puche AC
    J Neurophysiol; 2020 Mar; 123(3):1120-1132. PubMed ID: 31995427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study of long-term potentiation in the carp (Cyprinus carpio L.) olfactory bulb.
    Satou M; Hoshikawa R; Sato Y; Okawa K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):135-50. PubMed ID: 16328534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb.
    Phillips ME; Sachdev RN; Willhite DC; Shepherd GM
    J Neurosci; 2012 Jan; 32(1):85-98. PubMed ID: 22219272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External tufted cells drive the output of olfactory bulb glomeruli.
    De Saint Jan D; Hirnet D; Westbrook GL; Charpak S
    J Neurosci; 2009 Feb; 29(7):2043-52. PubMed ID: 19228958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct temporal filters in mitral cells and external tufted cells of the olfactory bulb.
    Vaaga CE; Westbrook GL
    J Physiol; 2017 Oct; 595(19):6349-6362. PubMed ID: 28791713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells.
    Urban NN; Sakmann B
    J Physiol; 2002 Jul; 542(Pt 2):355-67. PubMed ID: 12122137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli.
    Borisovska M; McGinley MJ; Bensen A; Westbrook GL
    J Physiol; 2011 Apr; 589(Pt 8):1927-41. PubMed ID: 21486802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb.
    Isaacson JS
    Neuron; 1999 Jun; 23(2):377-84. PubMed ID: 10399942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals.
    Ennis M; Zhou FM; Ciombor KJ; Aroniadou-Anderjaska V; Hayar A; Borrelli E; Zimmer LA; Margolis F; Shipley MT
    J Neurophysiol; 2001 Dec; 86(6):2986-97. PubMed ID: 11731555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connexin36 mediates spike synchrony in olfactory bulb glomeruli.
    Christie JM; Bark C; Hormuzdi SG; Helbig I; Monyer H; Westbrook GL
    Neuron; 2005 Jun; 46(5):761-72. PubMed ID: 15924862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.