These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18278886)
1. Novel 1,3-dipolar cycloadditions of dinitraminic acid: implications for the chemical stability of ammonium dinitramide. Rahm M; Brinck T J Phys Chem A; 2008 Mar; 112(11):2456-63. PubMed ID: 18278886 [TBL] [Abstract][Full Text] [Related]
4. Multicomponent cascade reactions: sequential [1 + 4] and [2 + 3] cycloadditions for the generation of heterocyclic ring systems. Fédou NM; Parsons PJ; Viseux EM; Whittle AJ Org Lett; 2005 Jul; 7(15):3179-82. PubMed ID: 16018615 [TBL] [Abstract][Full Text] [Related]
5. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study. Schoenebeck F; Ess DH; Jones GO; Houk KN J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632 [TBL] [Abstract][Full Text] [Related]
6. Stereoselectivity of nitrile oxide cycloadditions to chiral allylic fluorides: experiment and theory. Prakesch M; Grée D; Grée R; Carter J; Washington I; Houk KN Chemistry; 2003 Nov; 9(22):5664-72. PubMed ID: 14639650 [TBL] [Abstract][Full Text] [Related]
7. Cyclic 1,3-dipoles or acyclic phosphonium ylides? Electronic characterization of "Montréalones". Krenske EH; Houk KN; Arndtsen BA; St Cyr DJ J Am Chem Soc; 2008 Aug; 130(31):10052-3. PubMed ID: 18616248 [TBL] [Abstract][Full Text] [Related]
8. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. Ess DH; Houk KN J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669 [TBL] [Abstract][Full Text] [Related]
9. DFT-HSAB prediction of regioselectivity in 1,3-dipolar cycloadditions: behavior of (4-substituted)benzonitrile oxides towards methyl propiolate. Ponti A; Molteni G Chemistry; 2006 Jan; 12(4):1156-61. PubMed ID: 16259036 [TBL] [Abstract][Full Text] [Related]
10. Reactivity of Pt- and Pd-bound nitriles towards nitrile oxides and nitrones: substitution vs. cycloaddition. Kuznetsov ML; Kukushkin VY; Pombeiro AJ Dalton Trans; 2008 Mar; (10):1312-22. PubMed ID: 18305843 [TBL] [Abstract][Full Text] [Related]
11. 1,3-Dipolar cycloadditions of Stone-Wales defective single-walled carbon nanotubes: A theoretical study. Yang T; Zhao X; Nagase S J Comput Chem; 2013 Oct; 34(26):2223-32. PubMed ID: 23832655 [TBL] [Abstract][Full Text] [Related]
12. DFT study of intermolecular [4 + 2] versus [3 + 2] cycloadditions in the dimerization of 2,4,6-trinitrotoluene (TNT): regioselectivity and stereoselectivity. Chen XF; Hou CY; Han KL J Phys Chem A; 2010 Jan; 114(2):1169-77. PubMed ID: 20017517 [TBL] [Abstract][Full Text] [Related]
13. Predictions of substituent effects in thermal azide 1,3-dipolar cycloadditions: implications for dynamic combinatorial (reversible) and click (irreversible) chemistry. Jones GO; Houk KN J Org Chem; 2008 Feb; 73(4):1333-42. PubMed ID: 18211089 [TBL] [Abstract][Full Text] [Related]
14. A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes. Lu X; Tian F; Xu X; Wang N; Zhang Q J Am Chem Soc; 2003 Aug; 125(34):10459-64. PubMed ID: 12926971 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study of chemo-, regio-, and stereoselectivity in 1,3-dipolar cycloadditions of nitrones and nitrile oxides to free and Pt-bound bifunctional dipolarophiles. Kuznetsov ML; Nazarov AA; Kozlova LV; Kukushkin VY J Org Chem; 2007 Jun; 72(12):4475-85. PubMed ID: 17497926 [TBL] [Abstract][Full Text] [Related]
16. Inverse electron-demand 1,3-dipolar cycloaddition of nitrile oxide with common nitriles leading to 3-functionalized 1,2,4-oxadiazoles. Nishiwaki N; Kobiro K; Hirao S; Sawayama J; Saigo K; Ise Y; Okajima Y; Ariga M Org Biomol Chem; 2011 Oct; 9(19):6750-4. PubMed ID: 21826294 [TBL] [Abstract][Full Text] [Related]
17. A theoretical study on the structure, intramolecular interactions, and detonation performance of hydrazinium dinitramide. Zhang X; Liu Y; Wang F; Gong X Chem Asian J; 2014 Jan; 9(1):229-36. PubMed ID: 24108480 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the enthalpy of formation, proton affinity, and gas-phase basicity of gamma-butyrolactone and 2-pyrrolidinone by isodesmic reactions. Vessecchi R; Galembeck SE J Phys Chem A; 2008 May; 112(17):4060-6. PubMed ID: 18380497 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of N-sulfinylamines and isocyanates: a computational comparison. Ivanova EV; Muchall HM J Phys Chem A; 2007 Oct; 111(42):10824-33. PubMed ID: 17915846 [TBL] [Abstract][Full Text] [Related]
20. An experimental and theoretical study on the interaction of N-heterocyclic carbene-derived 1,3-dipoles with methoxycarbonylallenes: highly regio- and stereoselective [3+2]-cycloadditions controlled by the structures of N-heterocycles of 1,3-dipoles. Cheng Y; Wang B; Wang XR; Zhang JH; Fang DC J Org Chem; 2009 Mar; 74(6):2357-67. PubMed ID: 19231834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]