These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18278937)

  • 1. Investigation into phenoxonium cations produced during the electrochemical oxidation of chroman-6-ol and dihydrobenzofuran-5-ol substituted compounds.
    Peng HM; Webster RD
    J Org Chem; 2008 Mar; 73(6):2169-75. PubMed ID: 18278937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E.
    Webster RD
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant differences in the electrochemical behavior of the alpha-, beta-, gamma-, and delta-tocopherols (vitamin E).
    Wilson GJ; Lin CY; Webster RD
    J Phys Chem B; 2006 Jun; 110(23):11540-8. PubMed ID: 16771430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable scan rate cyclic voltammetry and theoretical studies on tocopherol (vitamin E) model compounds.
    Yao WW; Peng HM; Webster RD; Gill PM
    J Phys Chem B; 2008 Jun; 112(22):6847-55. PubMed ID: 18461985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically controlled chemically reversible transformation of alpha-tocopherol (vitamin E) into its phenoxonium cation.
    Williams LL; Webster RD
    J Am Chem Soc; 2004 Oct; 126(39):12441-50. PubMed ID: 15453778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-lived radical cations as model compounds for the reactive one-electron oxidation product of vitamin E.
    Peng HM; Choules BF; Yao WW; Zhang Z; Webster RD; Gill PM
    J Phys Chem B; 2008 Aug; 112(33):10367-74. PubMed ID: 18661934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of alpha-tocopherol (vitamin E) and related chromanol model compounds into their phenoxonium ions by chemical oxidation with the nitrosonium cation.
    Lee SB; Lin CY; Gill PM; Webster RD
    J Org Chem; 2005 Dec; 70(25):10466-73. PubMed ID: 16323859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding electrochromic processes initiated by dithienylcyclopentene cation-radicals.
    Guirado G; Coudret C; Hliwa M; Launay JP
    J Phys Chem B; 2005 Sep; 109(37):17445-59. PubMed ID: 16853231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the lifetimes of phenoxonium cations derived from vitamin E via structural modifications.
    Yue Y; Novianti ML; Tessensohn ME; Hirao H; Webster RD
    Org Biomol Chem; 2015 Dec; 13(48):11732-9. PubMed ID: 26480893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the oxidative electrochemistry of vitamin E.
    Webster RD
    Acc Chem Res; 2007 Apr; 40(4):251-7. PubMed ID: 17269797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic voltammetric analysis of 2-styrylchromones: relationship with the antioxidant activity.
    Gomes A; Fernandes E; Garcia MB; Silva AM; Pinto DC; Santos CM; Cavaleiro JA; Lima JL
    Bioorg Med Chem; 2008 Sep; 16(17):7939-43. PubMed ID: 18706820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen.
    Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R
    Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-electron oxidized nickel(II) complexes of bis and tetra(salicylidene) phenylenediamine Schiff bases: from monoradical to interacting Ni(III) ions.
    Rotthaus O; Jarjayes O; Philouze C; Del Valle CP; Thomas F
    Dalton Trans; 2009 Mar; (10):1792-800. PubMed ID: 19240913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical studies of verdazyl radicals.
    Gilroy JB; McKinnon SD; Koivisto BD; Hicks RG
    Org Lett; 2007 Nov; 9(23):4837-40. PubMed ID: 17927192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols.
    Nematollahi D; Shayani-jam H
    J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox status of acute pancreatitis as measured by cyclic voltammetry: initial rodent studies to assess disease severity.
    Mittal A; Flint RJ; Fanous M; Delahunt B; Kilmartin PA; Cooper GJ; Windsor JA; Phillips AR
    Crit Care Med; 2008 Mar; 36(3):866-72. PubMed ID: 18431274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl.
    Scialdone O; Randazzo S; Galia A; Silvestri G
    Water Res; 2009 May; 43(8):2260-72. PubMed ID: 19269668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reporting a new class of divanadium(V) compounds connected by an unsupported hydroxo bridge.
    Chatterjee PB; Mandal D; Audhya A; Choi KY; Endo A; Chaudhury M
    Inorg Chem; 2008 May; 47(9):3709-18. PubMed ID: 18402436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments.
    Yum K; Cho HN; Hu J; Yu MF
    ACS Nano; 2007 Dec; 1(5):440-8. PubMed ID: 19206665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical behavior of colchicine using graphite-based screen-printed electrodes.
    Bodoki E; Laschi S; Palchetti I; Săndulescu R; Mascini M
    Talanta; 2008 Jul; 76(2):288-94. PubMed ID: 18585279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.