BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18279021)

  • 1. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle.
    Simonides WS; van Hardeveld C
    Thyroid; 2008 Feb; 18(2):205-16. PubMed ID: 18279021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms modulating skeletal muscle phenotype.
    Blaauw B; Schiaffino S; Reggiani C
    Compr Physiol; 2013 Oct; 3(4):1645-87. PubMed ID: 24265241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of thyroid hormone in skeletal muscle physiology.
    Bloise FF; Cordeiro A; Ortiga-Carvalho TM
    J Endocrinol; 2018 Jan; 236(1):R57-R68. PubMed ID: 29051191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy turnover for Ca2+ cycling in skeletal muscle.
    Barclay CJ; Woledge RC; Curtin NA
    J Muscle Res Cell Motil; 2007; 28(4-5):259-74. PubMed ID: 17882515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Thyroid hormones and muscle phenotype: involvement of new signaling pathways].
    Bigard AX; Koulmann N; Bahi L; Sanchez H; Ventura-Clapier R
    J Soc Biol; 2008; 202(2):93-100. PubMed ID: 18547505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na v1.4 and Na v1.5 are modulated differently during muscle immobilization and contractile phenotype conversion.
    Rannou F; Pennec JP; Morel J; Guéret G; Leschiera R; Droguet M; Gioux M; Giroux-Metges MA
    J Appl Physiol (1985); 2011 Aug; 111(2):495-507. PubMed ID: 21596924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.
    Plomgaard P; Penkowa M; Leick L; Pedersen BK; Saltin B; Pilegaard H
    J Appl Physiol (1985); 2006 Sep; 101(3):817-25. PubMed ID: 16794029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle fiber type: influence on contractile and metabolic properties.
    Zierath JR; Hawley JA
    PLoS Biol; 2004 Oct; 2(10):e348. PubMed ID: 15486583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle?
    Kinsey ST; Pathi P; Hardy KM; Jordan A; Locke BR
    J Exp Biol; 2005 Jul; 208(Pt 14):2641-52. PubMed ID: 16000534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of eccentrically and concentrically biased training on mouse muscle phenotype.
    Hody S; Lacrosse Z; Leprince P; Collodoro M; Croisier JL; Rogister B
    Med Sci Sports Exerc; 2013 Aug; 45(8):1460-8. PubMed ID: 23439418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics.
    Vissing K; Andersen JL; Harridge SD; Sandri C; Hartkopp A; Kjaer M; Schjerling P
    J Appl Physiol (1985); 2005 Jul; 99(1):164-72. PubMed ID: 15746295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model.
    Roy RR; Baldwin KM; Edgerton VR
    Exerc Sport Sci Rev; 1996; 24():399-425. PubMed ID: 8744257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle.
    Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-based differences in skeletal muscle kinetics and fiber-type composition.
    Haizlip KM; Harrison BC; Leinwand LA
    Physiology (Bethesda); 2015 Jan; 30(1):30-9. PubMed ID: 25559153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH; Silveira LR; Nachbar RT; Vitzel KF; Curi R
    Free Radic Biol Med; 2010 Apr; 48(7):953-60. PubMed ID: 20080177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of slow- and fast-twitch skeletal muscles.
    Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K
    Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells.
    Ceddia RB; Sweeney G
    J Physiol; 2004 Mar; 555(Pt 2):409-21. PubMed ID: 14724211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Links between thyroid hormone action, oxidative metabolism, and diabetes risk?
    Crunkhorn S; Patti ME
    Thyroid; 2008 Feb; 18(2):227-37. PubMed ID: 18279023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy state and myosin heavy chain isoforms in single fibres of normal and transforming rabbit muscles.
    Conjard A; Peuker H; Pette D
    Pflugers Arch; 1998 Nov; 436(6):962-9. PubMed ID: 9799414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.