These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18279376)

  • 1. Parkinson's disease: genetic versus toxin-induced rodent models.
    Terzioglu M; Galter D
    FEBS J; 2008 Apr; 275(7):1384-1391. PubMed ID: 18279376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes, proteins, and neurotoxins involved in Parkinson's disease.
    von Bohlen und Halbach O; Schober A; Krieglstein K
    Prog Neurobiol; 2004 Jun; 73(3):151-77. PubMed ID: 15236834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models.
    Airavaara M; Parkkinen I; Konovalova J; Albert K; Chmielarz P; Domanskyi A
    Curr Protoc Neurosci; 2020 Mar; 91(1):e88. PubMed ID: 32049438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Developments in Genetic rat models of Parkinson's Disease.
    Creed RB; Goldberg MS
    Mov Disord; 2018 May; 33(5):717-729. PubMed ID: 29418019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease.
    Cooper JF; Spielbauer KK; Senchuk MM; Nadarajan S; Colaiácovo MP; Van Raamsdonk JM
    Exp Neurol; 2018 Dec; 310():58-69. PubMed ID: 30194957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of Parkinson's disease-associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons.
    Giguère N; Pacelli C; Saumure C; Bourque MJ; Matheoud D; Levesque D; Slack RS; Park DS; Trudeau LÉ
    J Biol Chem; 2018 Jun; 293(25):9580-9593. PubMed ID: 29700116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic animal models of Parkinson's disease.
    Dawson TM; Ko HS; Dawson VL
    Neuron; 2010 Jun; 66(5):646-61. PubMed ID: 20547124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DJ-1: a newcomer in Parkinson's disease pathology.
    da Costa CA
    Curr Mol Med; 2007 Nov; 7(7):650-7. PubMed ID: 18045143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease.
    Orr AL; Rutaganira FU; de Roulet D; Huang EJ; Hertz NT; Shokat KM; Nakamura K
    Neurochem Int; 2017 Oct; 109():106-116. PubMed ID: 28434973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants.
    Kim S; Pajarillo E; Nyarko-Danquah I; Aschner M; Lee E
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models.
    Evsyukov V; Domanskyi A; Bierhoff H; Gispert S; Mustafa R; Schlaudraff F; Liss B; Parlato R
    Dis Model Mech; 2017 May; 10(5):633-643. PubMed ID: 28360124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal models of Parkinson's disease: An updated overview.
    Gubellini P; Kachidian P
    Rev Neurol (Paris); 2015 Nov; 171(11):750-61. PubMed ID: 26343921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parkinson's: A Disease of Aberrant Vesicle Trafficking.
    Singh PK; Muqit MMK
    Annu Rev Cell Dev Biol; 2020 Oct; 36():237-264. PubMed ID: 32749865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity.
    Nguyen APT; Tsika E; Kelly K; Levine N; Chen X; West AB; Boularand S; Barneoud P; Moore DJ
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17296-17307. PubMed ID: 32631998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal and Evoked Neurotransmitter Levels in Parkin, DJ-1, PINK1 and LRRK2 Knockout Rat Striatum.
    Creed RB; Menalled L; Casey B; Dave KD; Janssens HB; Veinbergs I; van der Hart M; Rassoulpour A; Goldberg MS
    Neuroscience; 2019 Jun; 409():169-179. PubMed ID: 31029729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the pathogenetic mechanisms underlying Parkinson's disease in medaka fish.
    Matsui H; Uemura N; Yamakado H; Takeda S; Takahashi R
    J Parkinsons Dis; 2014; 4(2):301-10. PubMed ID: 24366926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview on the Role of α -Synuclein in Experimental Models of Parkinson's Disease from Pathogenesis to Therapeutics.
    Javed H; Kamal MA; Ojha S
    CNS Neurol Disord Drug Targets; 2016; 15(10):1240-1252. PubMed ID: 27658511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of LRRK2 and α-Synuclein in Parkinson's Disease.
    Daher JP
    Adv Neurobiol; 2017; 14():209-226. PubMed ID: 28353286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.