BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18279413)

  • 1. Biomechanical analysis of the accommodative apparatus in primates.
    Ehrmann K; Ho A; Parel JM
    Clin Exp Optom; 2008 May; 91(3):302-12. PubMed ID: 18279413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus.
    Pinilla Cortés L; Burd HJ; Montenegro GA; D'Antin JC; Mikielewicz M; Barraquer RI; Michael R
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2926-32. PubMed ID: 26024078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the lens capsule on the mechanical accommodative response in a lens stretcher.
    Ziebarth NM; Borja D; Arrieta E; Aly M; Manns F; Dortonne I; Nankivil D; Jain R; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4490-6. PubMed ID: 18515568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extralenticular and lenticular aspects of accommodation and presbyopia in human versus monkey eyes.
    Croft MA; McDonald JP; Katz A; Lin TL; Lütjen-Drecoll E; Kaufman PL
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5035-48. PubMed ID: 23745002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of anterior zonule transection on the change in lens diameter and power in cynomolgus monkeys during simulated accommodation.
    Nankivil D; Manns F; Arrieta-Quintero E; Ziebarth N; Borja D; Amelinckx A; Bernal A; Ho A; Parel JM
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):4017-21. PubMed ID: 19324840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes.
    Croft MA; Nork TM; McDonald JP; Katz A; Lütjen-Drecoll E; Kaufman PL
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5049-58. PubMed ID: 23745005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of a simple mechanical model of accommodation to the aging eye.
    Wyatt HJ
    Vision Res; 1993; 33(5-6):731-8. PubMed ID: 8351845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of accommodation: surgical options for correction of presbyopia.
    Glasser A
    Clin Exp Optom; 2008 May; 91(3):279-95. PubMed ID: 18399800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature affects the biomechanical response of in vitro non-human primate lenses during lens stretching.
    Maceo Heilman B; Durkee H; Rowaan CJ; Arrieta E; Kelly SP; Ehrmann K; Manns F; Parel JM
    Exp Eye Res; 2022 Mar; 216():108951. PubMed ID: 35051430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presbyopia, accommodation, and the mature catenary.
    Coleman DJ; Fish SK
    Ophthalmology; 2001 Sep; 108(9):1544-51. PubMed ID: 11535447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Presbyopia treatment using a femtosecond laser].
    Blum M; Kunert K; Nolte S; Riehemann S; Palme M; Peschel T; Dick M; Dick HB
    Ophthalmologe; 2006 Dec; 103(12):1014-9. PubMed ID: 17111185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodative movements of the lens/capsule and the strand that extends between the posterior vitreous zonule insertion zone & the lens equator, in relation to the vitreous face and aging.
    Croft MA; Heatley G; McDonald JP; Katz A; Kaufman PL
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):21-32. PubMed ID: 26769326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-animated model of accommodation and presbyopia.
    Goldberg DB
    J Cataract Refract Surg; 2015 Feb; 41(2):437-45. PubMed ID: 25661140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new look at an old problem: 3D modeling of accommodation reveals how age-related biomechanical changes contribute to dysfunction in presbyopia.
    Knaus KR; Hipsley A; Blemker SS
    Biomech Model Mechanobiol; 2024 Feb; 23(1):193-205. PubMed ID: 37733144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the aging rhesus monkey.
    Haefliger E; Parel JM
    J Refract Corneal Surg; 1994; 10(5):550-5. PubMed ID: 7530105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zonules selectively alter the shape of the lens during accommodation based on the location of their anchorage points.
    Nankivil D; Maceo Heilman B; Durkee H; Manns F; Ehrmann K; Kelly S; Arrieta-Quintero E; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1751-60. PubMed ID: 25698707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.