These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 18279902)
1. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: a comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. Martín-Acebes MA; González-Magaldi M; Rosas MF; Borrego B; Brocchi E; Armas-Portela R; Sobrino F Virology; 2008 May; 374(2):432-43. PubMed ID: 18279902 [TBL] [Abstract][Full Text] [Related]
2. Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. Moffat K; Howell G; Knox C; Belsham GJ; Monaghan P; Ryan MD; Wileman T J Virol; 2005 Apr; 79(7):4382-95. PubMed ID: 15767438 [TBL] [Abstract][Full Text] [Related]
3. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. García-Briones M; Rosas MF; González-Magaldi M; Martín-Acebes MA; Sobrino F; Armas-Portela R Virology; 2006 Jun; 349(2):409-21. PubMed ID: 16624365 [TBL] [Abstract][Full Text] [Related]
4. Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. O'Donnell VK; Pacheco JM; Henry TM; Mason PW Virology; 2001 Aug; 287(1):151-62. PubMed ID: 11504550 [TBL] [Abstract][Full Text] [Related]
5. Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. Banér J; Gyarmati P; Yacoub A; Hakhverdyan M; Stenberg J; Ericsson O; Nilsson M; Landegren U; Belák S J Virol Methods; 2007 Aug; 143(2):200-6. PubMed ID: 17451815 [TBL] [Abstract][Full Text] [Related]
6. Rapid and differential diagnosis of foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis by a new multiplex RT-PCR assay. Fernández J; Agüero M; Romero L; Sánchez C; Belák S; Arias M; Sánchez-Vizcaíno JM J Virol Methods; 2008 Feb; 147(2):301-11. PubMed ID: 17964668 [TBL] [Abstract][Full Text] [Related]
7. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus. Rosas MF; Vieira YA; Postigo R; Martín-Acebes MA; Armas-Portela R; Martínez-Salas E; Sobrino F Virology; 2008 Oct; 380(1):34-45. PubMed ID: 18694581 [TBL] [Abstract][Full Text] [Related]
8. Development and laboratory evaluation of two lateral flow devices for the detection of vesicular stomatitis virus in clinical samples. Ferris NP; Clavijo A; Yang M; Velazquez-Salinas L; Nordengrahn A; Hutchings GH; Kristersson T; Merza M J Virol Methods; 2012 Mar; 180(1-2):96-100. PubMed ID: 22230813 [TBL] [Abstract][Full Text] [Related]
9. Development and laboratory evaluation of a lateral flow device for the detection of swine vesicular disease virus in clinical samples. Ferris NP; Nordengrahn A; Hutchings GH; Paton DJ; Kristersson T; Merza M J Virol Methods; 2010 Feb; 163(2):477-80. PubMed ID: 19819260 [TBL] [Abstract][Full Text] [Related]
10. Analysis of foot-and-mouth disease virus internalization events in cultured cells. O'Donnell V; LaRocco M; Duque H; Baxt B J Virol; 2005 Jul; 79(13):8506-18. PubMed ID: 15956593 [TBL] [Abstract][Full Text] [Related]
11. Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. Martín-Acebes MA; González-Magaldi M; Vázquez-Calvo A; Armas-Portela R; Sobrino F J Virol; 2009 May; 83(9):4216-26. PubMed ID: 19225001 [TBL] [Abstract][Full Text] [Related]
12. Application of universal primers for identification of Foot-and-mouth disease virus and Swine vesicular disease virus by PCR and PCR-ELISA. Lomakina NF; Fallacara F; Pacciarini M; Amadori M; Lomakin AI; Timina AM; Shcherbakova LO; Drygin VV Arch Virol; 2004 Jun; 149(6):1155-70. PubMed ID: 15168202 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. Moffat K; Knox C; Howell G; Clark SJ; Yang H; Belsham GJ; Ryan M; Wileman T J Virol; 2007 Feb; 81(3):1129-39. PubMed ID: 17121791 [TBL] [Abstract][Full Text] [Related]
14. Validation of a binary ethylenimine (BEI) inactivation procedure for biosafety treatment of foot-and-mouth disease viruses (FMDV), vesicular stomatitis viruses (VSV), and swine vesicular disease virus (SVDV). Wu P; Rodríguez YY; Hershey BJ; Tadassa Y; Dodd KA; Jia W Vet Microbiol; 2021 Jan; 252():108928. PubMed ID: 33248402 [TBL] [Abstract][Full Text] [Related]
15. Evading the host immune response: how foot-and-mouth disease virus has become an effective pathogen. Grubman MJ; Moraes MP; Diaz-San Segundo F; Pena L; de los Santos T FEMS Immunol Med Microbiol; 2008 Jun; 53(1):8-17. PubMed ID: 18400012 [TBL] [Abstract][Full Text] [Related]
16. Activity of vesicular stomatitis virus M protein mutants in cell rounding is correlated with the ability to inhibit host gene expression and is not correlated with virus assembly function. Lyles DS; McKenzie MO Virology; 1997 Mar; 229(1):77-89. PubMed ID: 9123880 [TBL] [Abstract][Full Text] [Related]
17. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Martín-Acebes MA; González-Magaldi M; Sandvig K; Sobrino F; Armas-Portela R Virology; 2007 Dec; 369(1):105-18. PubMed ID: 17714753 [TBL] [Abstract][Full Text] [Related]
18. A RT-PCR assay for the differential diagnosis of vesicular viral diseases of swine. Núñez JI; Blanco E; Hernández T; Gómez-Tejedor C; Martín MJ; Dopazo J; Sobrino F J Virol Methods; 1998 Jun; 72(2):227-35. PubMed ID: 9694330 [TBL] [Abstract][Full Text] [Related]
19. Domain disruptions of individual 3B proteins of foot-and-mouth disease virus do not alter growth in cell culture or virulence in cattle. Pacheco JM; Piccone ME; Rieder E; Pauszek SJ; Borca MV; Rodriguez LL Virology; 2010 Sep; 405(1):149-56. PubMed ID: 20580394 [TBL] [Abstract][Full Text] [Related]
20. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Cho MW; Teterina N; Egger D; Bienz K; Ehrenfeld E Virology; 1994 Jul; 202(1):129-45. PubMed ID: 8009827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]