BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 18280178)

  • 1. Intraretinal RGMa is involved in retino-tectal mapping.
    Tassew NG; Chestopolava L; Beecroft R; Matsunaga E; Teng H; Chedotal A; Monnier PP
    Mol Cell Neurosci; 2008 Apr; 37(4):761-9. PubMed ID: 18280178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and molecules controlling the development of retinal maps.
    Roskies A; Friedman GC; O'Leary DD
    Perspect Dev Neurobiol; 1995; 3(1):63-75. PubMed ID: 8542257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system.
    Braisted JE; McLaughlin T; Wang HU; Friedman GC; Anderson DJ; O'leary DD
    Dev Biol; 1997 Nov; 191(1):14-28. PubMed ID: 9356168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ϒ-secretase and LARG mediate distinct RGMa activities to control appropriate layer targeting within the optic tectum.
    Banerjee P; Harada H; Tassew NG; Charish J; Goldschneider D; Wallace VA; Sugita S; Mehlen P; Monnier PP
    Cell Death Differ; 2016 Mar; 23(3):442-53. PubMed ID: 26292756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro studies on neural specificity.
    Roth S
    Natl Cancer Inst Monogr; 1978 May; (48):343-5. PubMed ID: 748754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis.
    Thanos S; Bonhoeffer F
    J Comp Neurol; 1984 Apr; 224(3):407-14. PubMed ID: 6715587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG; Halfter W
    Perspect Dev Neurobiol; 1994; 2(1):75-87. PubMed ID: 7530146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robos are required for the correct targeting of retinal ganglion cell axons in the visual pathway of the brain.
    Plachez C; Andrews W; Liapi A; Knoell B; Drescher U; Mankoo B; Zhe L; Mambetisaeva E; Annan A; Bannister L; Parnavelas JG; Richards LJ; Sundaresan V
    Mol Cell Neurosci; 2008 Apr; 37(4):719-30. PubMed ID: 18272390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chick PTPsigma regulates the targeting of retinal axons within the optic tectum.
    Rashid-Doubell F; McKinnell I; Aricescu AR; Sajnani G; Stoker A
    J Neurosci; 2002 Jun; 22(12):5024-33. PubMed ID: 12077198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective retinal reinnervation of a surgically created tectal island in goldfish. I. Light microscopic analysis.
    Edwards MA; Sharma SC; Murray M
    J Comp Neurol; 1985 Feb; 232(3):372-85. PubMed ID: 3973097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective retinal reinnervation of a surgically created tectal island in goldfish. II. Electron microscopic analysis.
    Edwards MA; Murray M
    J Comp Neurol; 1985 Feb; 232(3):386-400. PubMed ID: 3973098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: a cobaltous-lysine study.
    Springer AD; Mednick AS
    J Comp Neurol; 1985 Jul; 237(2):239-50. PubMed ID: 4031123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML; Rattray D; Harvey S
    Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons.
    Rager G
    Proc R Soc Lond B Biol Sci; 1976 Feb; 192(1108):331-52. PubMed ID: 3794
    [No Abstract]   [Full Text] [Related]  

  • 18. Position, guidance, and mapping in the developing visual system.
    Holt CE; Harris WA
    J Neurobiol; 1993 Oct; 24(10):1400-22. PubMed ID: 8228964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons.
    Callander DC; Lamont RE; Childs SJ; McFarlane S
    Dev Dyn; 2007 Oct; 236(10):2918-24. PubMed ID: 17879313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retroviral misexpression of cVax disturbs retinal ganglion cell axon fasciculation and intraretinal pathfinding in vivo and guidance of nasal ganglion cell axons in vivo.
    Mühleisen TW; Agoston Z; Schulte D
    Dev Biol; 2006 Sep; 297(1):59-73. PubMed ID: 16769047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.