These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 18280459)
21. Kinematics of heelstrike during walking and carrying: implications for slip resistance testing. Holbein-Jenny MA; Redfern MS; Gottesman D; Chaffin DB Ergonomics; 2007 Mar; 50(3):352-63. PubMed ID: 17536773 [TBL] [Abstract][Full Text] [Related]
22. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface. Ziaei M; Nabavi SH; Mokhtarinia HR; Tabatabai Ghomshe SF Int J Occup Environ Med; 2013 Jan; 4(1):27-35. PubMed ID: 23279795 [TBL] [Abstract][Full Text] [Related]
23. The role of vision in obese and normal-weight children's gait control. D'Hondt E; Segers V; Deforche B; Shultz SP; Tanghe A; Gentier I; De Bourdeaudhuij I; De Clercq D; Lenoir M Gait Posture; 2011 Feb; 33(2):179-84. PubMed ID: 21094609 [TBL] [Abstract][Full Text] [Related]
24. Gait parameters as predictors of slip severity in younger and older adults. Moyer BE; Chambers AJ; Redfern MS; Cham R Ergonomics; 2006 Mar; 49(4):329-43. PubMed ID: 16690563 [TBL] [Abstract][Full Text] [Related]
25. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking. Burnfield JM; Powers CM J Forensic Sci; 2007 Nov; 52(6):1328-33. PubMed ID: 17868269 [TBL] [Abstract][Full Text] [Related]
26. Effects of slip testing parameters on measured coefficient of friction. Beschorner KE; Redfern MS; Porter WL; Debski RE Appl Ergon; 2007 Nov; 38(6):773-80. PubMed ID: 17196925 [TBL] [Abstract][Full Text] [Related]
27. Predicting slips and falls considering required and available friction. Hanson JP; Redfern MS; Mazumdar M Ergonomics; 1999 Dec; 42(12):1619-33. PubMed ID: 10643404 [TBL] [Abstract][Full Text] [Related]
28. A methodology to quantify the stochastic distribution of friction coefficient required for level walking. Chang WR; Chang CC; Matz S; Lesch MF Appl Ergon; 2008 Nov; 39(6):766-71. PubMed ID: 18187104 [TBL] [Abstract][Full Text] [Related]
29. Heel lifts and the stance phase of gait in subjects with limited ankle dorsiflexion. Johanson MA; Cooksey A; Hillier C; Kobbeman H; Stambaugh A J Athl Train; 2006; 41(2):159-65. PubMed ID: 16791300 [TBL] [Abstract][Full Text] [Related]
30. Identification of heel strike under a slippery condition. Chang WR; Xu X Appl Ergon; 2018 Jan; 66():32-40. PubMed ID: 28958428 [TBL] [Abstract][Full Text] [Related]
31. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Lockhart TE; Kim S Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575 [TBL] [Abstract][Full Text] [Related]
32. Preferred surface microscopic geometric features on floors as potential interventions for slip and fall accidents on liquid contaminated surfaces. Chang WR J Safety Res; 2004; 35(1):71-9. PubMed ID: 14992848 [TBL] [Abstract][Full Text] [Related]
33. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Burnfield JM; Powers CM Ergonomics; 2006 Aug; 49(10):982-95. PubMed ID: 16803728 [TBL] [Abstract][Full Text] [Related]
34. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking. Tsai YJ; Powers CM Gait Posture; 2009 Oct; 30(3):303-6. PubMed ID: 19553123 [TBL] [Abstract][Full Text] [Related]
35. Mechanics of toe and heel landing in stepping down in ongoing gait. van Dieën JH; Spanjaard M; Könemann R; Bron L; Pijnappels M J Biomech; 2008 Aug; 41(11):2417-21. PubMed ID: 18619600 [TBL] [Abstract][Full Text] [Related]
36. Early heelstrike kinetics are indicative of slip potential during walking over a contaminated surface. Osis ST; Worobets JT; Stefanyshyn DJ Hum Factors; 2012 Feb; 54(1):5-13. PubMed ID: 22409098 [TBL] [Abstract][Full Text] [Related]
37. Step time variability and pelvis acceleration patterns of younger and older adults: effects of footwear and surface conditions. Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR Res Sports Med; 2011 Jan; 19(1):28-41. PubMed ID: 21253974 [TBL] [Abstract][Full Text] [Related]
38. Biomechanical gait analysis for the extraction of slip resistance test parameters. Fischer H; Kirchberg S; Moessner T Ind Health; 2009 Dec; 47(6):617-25. PubMed ID: 19996537 [TBL] [Abstract][Full Text] [Related]
39. Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability. Burnfield JM; Tsai YJ; Powers CM Gait Posture; 2005 Aug; 22(1):82-8. PubMed ID: 15996597 [TBL] [Abstract][Full Text] [Related]
40. Lower-extremity gait kinematics on slippery surfaces in construction worksites. Fong DT; Hong Y; Li JX Med Sci Sports Exerc; 2005 Mar; 37(3):447-54. PubMed ID: 15741844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]