These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18280647)

  • 61. A neural network approach to burst detection.
    Mounce SR; Day AJ; Wood AS; Khan A; Widdop PD; Machell J
    Water Sci Technol; 2002; 45(4-5):237-46. PubMed ID: 11936639
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A hybrid genetic--neural algorithm for modeling the biodegradation process of DnBP in AAO system.
    Huang M; Ma Y; Wan J; Zhang H; Wang Y; Chen Y; Yoo C; Guo W
    Bioresour Technol; 2011 Oct; 102(19):8907-13. PubMed ID: 21824769
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimization of the separation of organic explosives by capillary electrophoresis with artificial neural networks.
    Casamento S; Kwok B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2003 Sep; 48(5):1075-83. PubMed ID: 14535670
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Artificial neural network model for earthquake prediction with radon monitoring.
    Külahci F; Inceöz M; Doğru M; Aksoy E; Baykara O
    Appl Radiat Isot; 2009 Jan; 67(1):212-9. PubMed ID: 18789709
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optimum DNA curvature using a hybrid approach involving an artificial neural network and genetic algorithm.
    Parbhane RV; Unniraman S; Tambe SS; Nagaraja V; Kulkarni BD
    J Biomol Struct Dyn; 2000 Feb; 17(4):665-72. PubMed ID: 10698104
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation.
    Akratos CS; Papaspyros JN; Tsihrintzis VA
    Bioresour Technol; 2009 Jan; 100(2):586-96. PubMed ID: 18786824
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of the apparent rate constants of the degradation of humic substances by ozonation and modeling of the removal of humic substances from the aqueous solutions with neural network.
    Oguz E; Tortum A; Keskinler B
    J Hazard Mater; 2008 Sep; 157(2-3):455-63. PubMed ID: 18289778
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor.
    Rahimpour MR; Asgari A
    J Hazard Mater; 2008 May; 153(1-2):557-65. PubMed ID: 17936505
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [The medium optimization of xylitol fermentation based on neural networks and genetic algorithms].
    Fang BS; Chen HW; Xie XL; Wan N; Mei YX; Hu ZD
    Sheng Wu Gong Cheng Xue Bao; 2000 Sep; 16(5):648-50. PubMed ID: 11191777
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computer modeling and functional evaluation of Venturi flow generators for use in ventilators.
    Shah VK; Enderle JD
    Biomed Sci Instrum; 1991; 27():313-20. PubMed ID: 2065171
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Desulfurizing absorbent for flue gas and its absorption mechanism.
    Li H; Chen WR; Liu DZ
    J Environ Sci (China); 2003 Jan; 15(1):92-6. PubMed ID: 12602610
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Artificial neural network-based equation for estimating VO2max from the 20 m shuttle run test in adolescents.
    Ruiz JR; Ramirez-Lechuga J; Ortega FB; Castro-Piñero J; Benitez JM; Arauzo-Azofra A; Sanchez C; Sjöström M; Castillo MJ; Gutierrez A; Zabala M;
    Artif Intell Med; 2008 Nov; 44(3):233-45. PubMed ID: 18691853
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modelling of secondary clarifier using regression analysis and artificial neural networks.
    Jeyanthi J; Saseetharan MK; Priya VS
    J Environ Sci Eng; 2006 Jan; 48(1):1-8. PubMed ID: 17913194
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Classification and identification of mosquito species using artificial neural networks.
    Banerjee AK; Kiran K; Murty US; Venkateswarlu Ch
    Comput Biol Chem; 2008 Dec; 32(6):442-7. PubMed ID: 18838305
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modeling of SO(2) scrubbing in spray towers.
    Bandyopadhyay A; Biswas MN
    Sci Total Environ; 2007 Sep; 383(1-3):25-40. PubMed ID: 17568656
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterizing temporal development of biofilm porosity using artificial neural networks.
    Veluchamy RR; Beyenal H; Lewandowski Z
    Water Sci Technol; 2008; 57(12):1867-72. PubMed ID: 18587172
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Typing SNP based on the near-infrared spectroscopy and artificial neural network.
    Ren L; Wang WP; Gao YZ; Yu XW; Xie HP
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):106-11. PubMed ID: 19264539
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Forecasting of ozone episode days by cost-sensitive neural network methods.
    Tsai CH; Chang LC; Chiang HC
    Sci Total Environ; 2009 Mar; 407(6):2124-35. PubMed ID: 19157520
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
    Wang R; Jiang J; Pan Y; Cao H; Cui Y
    J Hazard Mater; 2009 Jul; 166(1):155-86. PubMed ID: 19101083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.