These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 18280794)
1. Limb regeneration and molting processes under chronic methoprene exposure in the mud fiddler crab, Uca pugnax. Stueckle TA; Likens J; Foran CM Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):366-77. PubMed ID: 18280794 [TBL] [Abstract][Full Text] [Related]
2. Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (Uca pugnax). Stueckle TA; Shock B; Foran CM Environ Toxicol Chem; 2009 Nov; 28(11):2348-59. PubMed ID: 19606911 [TBL] [Abstract][Full Text] [Related]
3. Impacts of molt-inhibiting organochlorine compounds on epidermal ecdysteroid signaling in the fiddler crab, Uca pugilator, in vitro. Meng Y; Zou E Comp Biochem Physiol C Toxicol Pharmacol; 2009 Nov; 150(4):436-41. PubMed ID: 19567274 [TBL] [Abstract][Full Text] [Related]
4. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax. Bergey LL; Weis JS Mar Environ Res; 2007 Dec; 64(5):556-62. PubMed ID: 17590429 [TBL] [Abstract][Full Text] [Related]
5. A molecular biomarker for disruption of crustacean molting: the N-acetyl-beta-glucosaminidase mRNA in the epidermis of the fiddler crab. Meng Y; Zou E Bull Environ Contam Toxicol; 2009 May; 82(5):554-8. PubMed ID: 19156345 [TBL] [Abstract][Full Text] [Related]
6. No acute toxicity to Uca pugnax, the mud fiddler crab, following a 96-h exposure to sediment-bound permethrin. Stueckle TA; Griffin K; Foran CM Environ Toxicol; 2008 Aug; 23(4):530-8. PubMed ID: 18214939 [TBL] [Abstract][Full Text] [Related]
7. Chitinase activity in the epidermis of the fiddler crab, Uca pugilator, as an in vivo screen for molt-interfering xenobiotics. Zou E; Bonvillain R Comp Biochem Physiol C Toxicol Pharmacol; 2004 Dec; 139(4):225-30. PubMed ID: 15683831 [TBL] [Abstract][Full Text] [Related]
8. Marsupial development in the mysid Neomysis integer (Crustacea: Mysidacea) to evaluate the effects of endocrine-disrupting chemicals. Ghekiere A; Fockedey N; Verslycke T; Vincx M; Janssen CR Ecotoxicol Environ Saf; 2007 Jan; 66(1):9-15. PubMed ID: 16624406 [TBL] [Abstract][Full Text] [Related]
9. Morphologic effects of in vivo acute exposure to the pesticide methoprene on the hepatopancreas of a non-target organism, Homarus americanus. Walker AN; Golden R; Horst MN Ecotoxicol Environ Saf; 2010 Nov; 73(8):1867-74. PubMed ID: 20825991 [TBL] [Abstract][Full Text] [Related]
10. Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting. Covi JA; Bader BD; Chang ES; Mykles DL J Exp Biol; 2010 Jan; 213(1):172-83. PubMed ID: 20008374 [TBL] [Abstract][Full Text] [Related]
11. Limb regeneration in fiddler crabs: species differences and effects of methylmercury. Weis JS Biol Bull; 1977 Apr; 152(2):263-74. PubMed ID: 856297 [TBL] [Abstract][Full Text] [Related]
12. Effects of zinc on molting and body weight of the estuarine crab Neohelice granulata (Brachyura: Varunidae). Beltrame MO; De Marco SG; Marcovecchio JE Sci Total Environ; 2010 Jan; 408(3):531-6. PubMed ID: 19903568 [TBL] [Abstract][Full Text] [Related]
13. Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Das S; Durica DS Mol Cell Endocrinol; 2013 Jan; 365(2):249-59. PubMed ID: 23142248 [TBL] [Abstract][Full Text] [Related]
14. Effect of limb regeneration on size increase at molt of the shore crabs Hemigrapsus oregonensis and Pachygrapsus crassipes. Kuris AM; Mager M J Exp Zool; 1975 Sep; 193(3):353-60. PubMed ID: 1176908 [TBL] [Abstract][Full Text] [Related]
15. Effect of an insect juvenile hormone analogue, Fenoxycarb on development and oxygen uptake by larval lobsters Homarus gammarus (L.). Arnold KE; Wells C; Spicer JI Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):393-6. PubMed ID: 18835588 [TBL] [Abstract][Full Text] [Related]
16. Activity of glutathione S-transferase in the hepatopancreas is not influenced by the molting cycle in the fiddler crab, Uca pugilator. Hotard S; Zou E Bull Environ Contam Toxicol; 2008 Sep; 81(3):242-4. PubMed ID: 18587514 [TBL] [Abstract][Full Text] [Related]
17. Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis. Yu X; Chang ES; Mykles DL Biol Bull; 2002 Jun; 202(3):204-12. PubMed ID: 12086991 [TBL] [Abstract][Full Text] [Related]
18. Impact of molt-disrupting BDE-47 on epidermal ecdysteroid signaling in the blue crab, Callinectes sapidus, in vitro. Booth A; Zou E Aquat Toxicol; 2016 Aug; 177():373-9. PubMed ID: 27376961 [TBL] [Abstract][Full Text] [Related]
19. Effects of estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Zou E; Fingerman M Ecotoxicol Environ Saf; 1999 Feb; 42(2):185-90. PubMed ID: 10051369 [TBL] [Abstract][Full Text] [Related]
20. Tissue-specific patterns and steady-state concentrations of ecdysteroid receptor and retinoid-X-receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator. Chung AC; Durica DS; Hopkins PM Gen Comp Endocrinol; 1998 Mar; 109(3):375-89. PubMed ID: 9480745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]