BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 18280987)

  • 1. Water-deficit stress-induced anatomical changes in higher plants.
    Shao HB; Chu LY; Jaleel CA; Zhao CX
    C R Biol; 2008 Mar; 331(3):215-25. PubMed ID: 18280987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.
    Shao HB; Chu LY; Jaleel CA; Manivannan P; Panneerselvam R; Shao MA
    Crit Rev Biotechnol; 2009; 29(2):131-51. PubMed ID: 19412828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.
    Zhou Y; Shao HB
    C R Biol; 2008 Apr; 331(4):321-8. PubMed ID: 18355755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits.
    Shao HB; Liang ZS; Shao MA; Sun Q
    Colloids Surf B Biointerfaces; 2005 May; 42(3-4):187-95. PubMed ID: 15876527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.
    Jia XY; Xu CY; Jing RL; Li RZ; Mao XG; Wang JP; Chang XP
    J Exp Bot; 2008; 59(4):739-51. PubMed ID: 18349049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits.
    Yoshimura K; Masuda A; Kuwano M; Yokota A; Akashi K
    Plant Cell Physiol; 2008 Feb; 49(2):226-41. PubMed ID: 18178965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding molecular mechanism of higher plant plasticity under abiotic stress.
    Shao HB; Guo QJ; Chu LY; Zhao XN; Su ZL; Hu YC; Cheng JF
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):37-45. PubMed ID: 16914294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stay wet or else: three ways in which plants can adjust hydraulically to their environment.
    Maseda PH; Fernández RJ
    J Exp Bot; 2006; 57(15):3963-77. PubMed ID: 17079697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress.
    Xiao X; Yang F; Zhang S; Korpelainen H; Li C
    Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP; Xing Y; Zhang JH
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of drought and heat stress on reproductive processes in cereals.
    Barnabás B; Jäger K; Fehér A
    Plant Cell Environ; 2008 Jan; 31(1):11-38. PubMed ID: 17971069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations of higher plant cell walls to water loss: drought vs desiccation.
    Moore JP; Vicré-Gibouin M; Farrant JM; Driouich A
    Physiol Plant; 2008 Oct; 134(2):237-45. PubMed ID: 18494857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding regulatory networks and engineering for enhanced drought tolerance in plants.
    Valliyodan B; Nguyen HT
    Curr Opin Plant Biol; 2006 Apr; 9(2):189-95. PubMed ID: 16483835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress.
    Jaleel CA; Gopi R; Sankar B; Gomathinayagam M; Panneerselvam R
    C R Biol; 2008 Jan; 331(1):42-7. PubMed ID: 18187121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology. Sizing up the shape of life.
    Zens MS; Webb CO
    Science; 2002 Feb; 295(5559):1475-6. PubMed ID: 11859181
    [No Abstract]   [Full Text] [Related]  

  • 17. Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves.
    Torres-Franklin ML; Gigon A; de Melo DF; Zuily-Fodil Y; Pham-Thi AT
    Physiol Plant; 2007 Oct; 131(2):201-10. PubMed ID: 18251892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants.
    Mahdieh M; Mostajeran A; Horie T; Katsuhara M
    Plant Cell Physiol; 2008 May; 49(5):801-13. PubMed ID: 18385163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of drought stress on growth of Glycyrrhiza uralensis].
    Liu CL; Wang WQ; Li SY; Cui JR
    Zhongguo Zhong Yao Za Zhi; 2004 Oct; 29(10):931-4. PubMed ID: 15631073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum.
    Slama I; Ghnaya T; Savouré A; Abdelly C
    C R Biol; 2008 Jun; 331(6):442-51. PubMed ID: 18510997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.