These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18281079)

  • 1. Iron and manganese removal in wetland treatment systems: rates, processes and implications for management.
    Batty L; Hooley D; Younger P
    Sci Total Environ; 2008 May; 394(1):1-8. PubMed ID: 18281079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.
    Younger PL; Henderson R
    Water Res; 2014 May; 55():74-82. PubMed ID: 24602862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spatial and temporal variation of Fe and Mn in the stormwater wetland].
    Chen QF; Shan BQ; Ma JJ; Gao XG; Ding SG; Liu W; Zhang J
    Huan Jing Ke Xue; 2011 May; 32(5):1340-5. PubMed ID: 21780588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sizing criteria for a low footprint passive mine water treatment system.
    Sapsford DJ; Williams KP
    Water Res; 2009 Feb; 43(2):423-32. PubMed ID: 19022469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New perspectives on the passive treatment of ferruginous circumneutral mine waters in the UK.
    Sapsford DJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7827-36. PubMed ID: 23636592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.
    Xu JC; Chen G; Huang XF; Li GM; Liu J; Yang N; Gao SN
    J Hazard Mater; 2009 Sep; 169(1-3):309-17. PubMed ID: 19443107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructed wetlands as green tools for management of boron mine wastewater.
    Türker OC; Türe C; Böcük H; Yakar A
    Int J Phytoremediation; 2014; 16(6):537-53. PubMed ID: 24912241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of biological oxidation of iron in the aerobic cells of the Wheal Jane pilot passive treatment system.
    Hall G; Swash P; Kotilainen S
    Sci Total Environ; 2005 Feb; 338(1-2):67-72. PubMed ID: 15680627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands.
    Batty LC; Younger PL
    Environ Sci Technol; 2002 Sep; 36(18):3997-4002. PubMed ID: 12269754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems.
    Schmidt M; Wolfram D; Birkigt J; Ahlheim J; Paschke H; Richnow HH; Nijenhuis I
    Sci Total Environ; 2014 Feb; 472():185-93. PubMed ID: 24291561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of plant species on water quality at the outlet of a sludge treatment wetland.
    Gagnon V; Chazarenc F; Kõiv M; Brisson J
    Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland.
    Hadad HR; Mufarrege MM; Pinciroli M; Di Luca GA; Maine MA
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):666-75. PubMed ID: 20041323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].
    Huang XF; Shen J; Wen Y; Liu J; Lu LJ; Zhou Q
    Huan Jing Ke Xue; 2010 Feb; 31(2):338-44. PubMed ID: 20391699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of organic pollutants from oak leachate in pilot scale wetland systems: How efficient are aeration and vegetation treatments?
    Svensson H; Ekstam B; Marques M; Hogland W
    Water Res; 2015 Nov; 84():120-6. PubMed ID: 26218465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of interannual removal variation of various constructed wetland types.
    Hijosa-Valsero M; Sidrach-Cardona R; Bécares E
    Sci Total Environ; 2012 Jul; 430():174-83. PubMed ID: 22647241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulic residence time and iron removal in a wetland receiving ferruginous mine water over a 4 year period from commissioning.
    Kusin FM; Jarvis AP; Gandy CJ
    Water Sci Technol; 2010; 62(8):1937-46. PubMed ID: 20962411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between polishing (maturation) ponds and subsurface flow constructed wetlands (planted and unplanted) for the post-treatment of the effluent from UASB reactors.
    von Sperling M; Dornelas FL; Assunção FA; de Paoli AC; Mabub MO
    Water Sci Technol; 2010; 61(5):1201-9. PubMed ID: 20220242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal varability of metals transport through a wetland impacted by mine drainage in the Rocky Mountains.
    August EE; McKnight DM; Hrncir DC; Garhart KS
    Environ Sci Technol; 2002 Sep; 36(17):3779-86. PubMed ID: 12322751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive treatment of ferruginous mine waters using high surface area media.
    Jarvis AP; Younger PL
    Water Res; 2001 Oct; 35(15):3643-8. PubMed ID: 11561625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.