BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18281312)

  • 1. Evidence for Ku70/Ku80 association with full-length RAG1.
    Raval P; Kriatchko AN; Kumar S; Swanson PC
    Nucleic Acids Res; 2008 Apr; 36(6):2060-72. PubMed ID: 18281312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70.
    Weinstock DM; Brunet E; Jasin M
    Nat Cell Biol; 2007 Aug; 9(8):978-81. PubMed ID: 17643113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs.
    Sekiguchi JA; Whitlow S; Alt FW
    Mol Cell; 2001 Dec; 8(6):1383-90. PubMed ID: 11779512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells.
    Verkaik NS; Esveldt-van Lange RE; van Heemst D; Brüggenwirth HT; Hoeijmakers JH; Zdzienicka MZ; van Gent DC
    Eur J Immunol; 2002 Mar; 32(3):701-9. PubMed ID: 11870614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative pathways for the repair of RAG-induced DNA breaks.
    Weinstock DM; Jasin M
    Mol Cell Biol; 2006 Jan; 26(1):131-9. PubMed ID: 16354685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer.
    Alshareeda AT; Negm OH; Albarakati N; Green AR; Nolan C; Sultana R; Madhusudan S; Benhasouna A; Tighe P; Ellis IO; Rakha EA
    Breast Cancer Res Treat; 2013 Jun; 139(2):301-10. PubMed ID: 23624778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Ku80 in microhomology-mediated end joining for DNA double-strand breaks in vivo.
    Katsura Y; Sasaki S; Sato M; Yamaoka K; Suzukawa K; Nagasawa T; Yokota J; Kohno T
    DNA Repair (Amst); 2007 May; 6(5):639-48. PubMed ID: 17236818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of Ku redox regulation.
    Bennett SM; Neher TM; Shatilla A; Turchi JJ
    BMC Mol Biol; 2009 Aug; 10():86. PubMed ID: 19715578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The non-homologous end-joining pathway is not involved in the radiosensitization of mammalian cells by heat shock.
    Dynlacht JR; Bittner ME; Bethel JA; Beck BD
    J Cell Physiol; 2003 Sep; 196(3):557-64. PubMed ID: 12891712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs.
    Holcomb VB; Vogel H; Hasty P
    Mech Ageing Dev; 2007; 128(11-12):601-8. PubMed ID: 17928034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ku70/Ku80 and DNA-dependent protein kinase catalytic subunit modulate RAG-mediated cleavage: implications for the enforcement of the 12/23 rule.
    Sawchuk DJ; Mansilla-Soto J; Alarcon C; Singha NC; Langen H; Bianchi ME; Lees-Miller SP; Nussenzweig MC; Cortes P
    J Biol Chem; 2004 Jul; 279(28):29821-31. PubMed ID: 15123719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal portion of RAG2 protects against transposition in vitro.
    Elkin SK; Matthews AG; Oettinger MA
    EMBO J; 2003 Apr; 22(8):1931-8. PubMed ID: 12682025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterification steps of V(D)J recombination.
    Swanson PC
    Mol Cell Biol; 2001 Jan; 21(2):449-58. PubMed ID: 11134333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rag mutations reveal robust alternative end joining.
    Corneo B; Wendland RL; Deriano L; Cui X; Klein IA; Wong SY; Arnal S; Holub AJ; Weller GR; Pancake BA; Shah S; Brandt VL; Meek K; Roth DB
    Nature; 2007 Sep; 449(7161):483-6. PubMed ID: 17898768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KARP-1 works as a heterodimer with Ku70, but the function of KARP-1 cannot perfectly replace that of Ku80 in DSB repair.
    Koike M; Yutoku Y; Koike A
    Exp Cell Res; 2011 Oct; 317(16):2267-75. PubMed ID: 21756904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining.
    Douglas P; Gupta S; Morrice N; Meek K; Lees-Miller SP
    DNA Repair (Amst); 2005 Aug; 4(9):1006-18. PubMed ID: 15941674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.
    Hung PJ; Chen BR; George R; Liberman C; Morales AJ; Colon-Ortiz P; Tyler JK; Sleckman BP; Bredemeyer AL
    Cell Cycle; 2017 Feb; 16(3):286-295. PubMed ID: 27830975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct requirements for Ku in N nucleotide addition at V(D)J- and non-V(D)J-generated double-strand breaks.
    Sandor Z; Calicchio ML; Sargent RG; Roth DB; Wilson JH
    Nucleic Acids Res; 2004; 32(6):1866-73. PubMed ID: 15047854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ku heterodimer: function in DNA repair and beyond.
    Fell VL; Schild-Poulter C
    Mutat Res Rev Mutat Res; 2015; 763():15-29. PubMed ID: 25795113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V(D)J recombination: RAG proteins, repair factors, and regulation.
    Gellert M
    Annu Rev Biochem; 2002; 71():101-32. PubMed ID: 12045092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.