These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18281340)

  • 1. Response properties of electrosensory units in the midbrain tectum of the paddlefish (Polyodon spathula Walbaum).
    Hofmann MH; Jung SN; Siebenaller U; Preissner M; Chagnaud BP; Wilkens LA
    J Exp Biol; 2008 Mar; 211(Pt 5):773-9. PubMed ID: 18281340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptive field organization of electrosensory neurons in the paddlefish (Polyodon spathula).
    Chagnaud BP; Wilkens LA; Hofmann MH
    J Physiol Paris; 2008; 102(4-6):246-55. PubMed ID: 18984044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response properties of electrosensory afferent fibers and secondary brain stem neurons in the paddlefish.
    Hofmann MH; Chagnaud B; Wilkens LA
    J Exp Biol; 2005 Nov; 208(Pt 22):4213-22. PubMed ID: 16272244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two parallel ascending pathways from the dorsal octavolateral nucleus to the midbrain in the paddlefish Polyodon spathula.
    Pothmann L; Wilkens LA; Schweitzer C; Hofmann MH
    Brain Res; 2009 Apr; 1265():93-102. PubMed ID: 19230828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response properties of electrosensory neurons in the lateral mesencephalic nucleus of the paddlefish.
    Chagnaud BP; Wilkens LA; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):209-20. PubMed ID: 18057942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central organization of the electrosensory system in the paddlefish (Polyodon spathula).
    Hofmann MH; Wojtenek W; Wilkens LA
    J Comp Neurol; 2002 Apr; 446(1):25-36. PubMed ID: 11920717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge-detection filter improves spatial resolution in the electrosensory system of the paddlefish.
    Hofmann MH; Chagnaud BP; Wilkens LA
    J Neurophysiol; 2009 Aug; 102(2):797-804. PubMed ID: 19458141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two modes of information processing in the electrosensory system of the paddlefish (Polyodon spathula).
    Pothmann L; Wilkens LA; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jan; 198(1):1-10. PubMed ID: 21960281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response properties of the electrosensory neurons in hindbrain of the white sturgeon, Acipenser transmontanus.
    Zhang X; Herzog H; Song J; Wang X; Fan C; Guo H
    Neurosci Bull; 2011 Dec; 27(6):422-9. PubMed ID: 22108819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation of electroreceptive and mechanoreceptive lateral line afferents in the hindbrain of chondrostean fishes.
    New JG; Bodznick D
    Brain Res; 1985 Jun; 336(1):89-98. PubMed ID: 4005579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata). A single-unit study.
    Schweitzer J
    J Comp Physiol A; 1986 Jan; 158(1):43-58. PubMed ID: 3723429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey.
    Wilkens LA; Hofmann MH; Wojtenek W
    J Physiol Paris; 2002; 96(5-6):363-77. PubMed ID: 14692485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information-processing demands in electrosensory and mechanosensory lateral line systems.
    Coombs S; New JG; Nelson M
    J Physiol Paris; 2002; 96(5-6):341-54. PubMed ID: 14692483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea.
    Bodznick D; Schmidt AW
    J Comp Neurol; 1984 Jun; 225(4):581-90. PubMed ID: 6736290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
    Neiman AB; Yakusheva TA; Russell DF
    J Neurophysiol; 2007 Nov; 98(5):2795-806. PubMed ID: 17855580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paddlefish strike at artificial dipoles simulating the weak electric fields of planktonic prey.
    Wojtenek W; Pei X; Wilkens LA
    J Exp Biol; 2001 Apr; 204(Pt 8):1391-9. PubMed ID: 11273801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Functional properties of electroreceptors in the lamprey].
    Muraveĭko VM
    Neirofiziologiia; 1984; 16(1):105-10. PubMed ID: 6717671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal analysis of moving DC electric fields in aquatic media.
    Hofmann MH; Wilkens LA
    Phys Biol; 2005 Mar; 2(1):23-8. PubMed ID: 16204853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
    Behrend O; Branoner F; Zhivkov Z; Ziehm U
    Eur J Neurosci; 2006 Feb; 23(3):729-44. PubMed ID: 16487154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral stochastic resonance: how the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish.
    Freund JA; Schimansky-Geier L; Beisner B; Neiman A; Russell DF; Yakusheva T; Moss F
    J Theor Biol; 2002 Jan; 214(1):71-83. PubMed ID: 11786033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.