These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 18281435)
1. Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Helmi K; Skraber S; Gantzer C; Willame R; Hoffmann L; Cauchie HM Appl Environ Microbiol; 2008 Apr; 74(7):2079-88. PubMed ID: 18281435 [TBL] [Abstract][Full Text] [Related]
2. [Cryptosporidium parvum and Giardia lamblia--incidence in surface and drinking water--significance and detection]. Wagner C; Kimmig P Gesundheitswesen; 1992 Nov; 54(11):662-5. PubMed ID: 1286249 [TBL] [Abstract][Full Text] [Related]
3. Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water. Medema GJ; Schets FM; Teunis PF; Havelaar AH Appl Environ Microbiol; 1998 Nov; 64(11):4460-6. PubMed ID: 9797307 [TBL] [Abstract][Full Text] [Related]
4. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Betancourt WQ; Rose JB Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586 [TBL] [Abstract][Full Text] [Related]
5. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system. Kumar T; Abd Majid MA; Onichandran S; Jaturas N; Andiappan H; Salibay CC; Tabo HA; Tabo N; Dungca JZ; Tangpong J; Phiriyasamith S; Yuttayong B; Polseela R; Do BN; Sawangjaroen N; Tan TC; Lim YA; Nissapatorn V Infect Dis Poverty; 2016 Jan; 5():3. PubMed ID: 26763230 [TBL] [Abstract][Full Text] [Related]
6. Two-year monitoring of Cryptosporidium parvum and Giardia lamblia occurrence in a recreational and drinking water reservoir using standard microscopic and molecular biology techniques. Helmi K; Skraber S; Burnet JB; Leblanc L; Hoffmann L; Cauchie HM Environ Monit Assess; 2011 Aug; 179(1-4):163-75. PubMed ID: 20890786 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of Noxious Protozoa for Management of Natural Water Resources. Bahk YY; Cho PY; Ahn SK; Park S; Jheong WH; Park YK; Shin HJ; Lee SS; Rhee O; Kim TS Korean J Parasitol; 2018 Apr; 56(2):205-210. PubMed ID: 29742877 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of attachment of Cryptosporidium parvum and Giardia lamblia to soil particles. Dai X; Boll J J Environ Qual; 2003; 32(1):296-304. PubMed ID: 12549569 [TBL] [Abstract][Full Text] [Related]
10. Recovery of Cryptosporidium oocysts and Giardia cysts from source water concentrates using immunomagnetic separation. McCuin RM; Bukhari Z; Sobrinho J; Clancy JL J Microbiol Methods; 2001 Jun; 45(2):69-76. PubMed ID: 11311391 [TBL] [Abstract][Full Text] [Related]
11. Combination of ARAD microfibre filtration and LAMP methodology for simple, rapid and cost-effective detection of human pathogenic Giardia duodenalis and Cryptosporidium spp. in drinking water. Plutzer J; Törökné A; Karanis P Lett Appl Microbiol; 2010 Jan; 50(1):82-8. PubMed ID: 19895420 [TBL] [Abstract][Full Text] [Related]
12. Contamination of water supplies with Cryptosporidium parvum and Giardia lamblia and diarrheal illness in selected Russian cities. Egorov A; Paulauskis J; Petrova L; Tereschenko A; Drizhd N; Ford T Int J Hyg Environ Health; 2002 May; 205(4):281-9. PubMed ID: 12068747 [TBL] [Abstract][Full Text] [Related]
13. Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water. Watt PM; Johnson DC; Gerba CP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Mar; 37(3):321-30. PubMed ID: 11929071 [TBL] [Abstract][Full Text] [Related]
14. Comparison of three methods to concentrate Giardia cysts and Cryptosporidium oocysts from surface and drinking waters. Karim H; Sylvain S; Laurence L; Lucien H; Henry-Michel C Water Sci Technol; 2010; 62(1):196-201. PubMed ID: 20595771 [TBL] [Abstract][Full Text] [Related]
15. Microfluidics for effective concentration and sorting of waterborne protozoan pathogens. Jimenez M; Bridle H J Microbiol Methods; 2016 Jul; 126():8-11. PubMed ID: 27074367 [TBL] [Abstract][Full Text] [Related]
16. Giardia and Cryptosporidium in source waters of São Paulo State, Brazil. Hachich EM; Sato MI; Galvani AT; Menegon JR; Mucci JL Water Sci Technol; 2004; 50(1):239-45. PubMed ID: 15318516 [TBL] [Abstract][Full Text] [Related]
17. Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623. Hill VR; Polaczyk AL; Kahler AM; Cromeans TL; Hahn D; Amburgey JE J Environ Qual; 2009; 38(2):822-5. PubMed ID: 19244504 [TBL] [Abstract][Full Text] [Related]
18. Improvement of recoveries for the determination of protozoa Cryptosporidium and Giardia in water using method 1623. Hu J; Feng Y; Ong SL; Ng WJ; Song L; Tan X; Chu X J Microbiol Methods; 2004 Sep; 58(3):321-5. PubMed ID: 15279936 [TBL] [Abstract][Full Text] [Related]
19. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Sunderland D; Graczyk TK; Tamang L; Breysse PN Water Res; 2007 Aug; 41(15):3483-9. PubMed ID: 17583766 [TBL] [Abstract][Full Text] [Related]
20. Hydrologic and vegetative removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate microspheres in coastal wetlands. Hogan JN; Daniels ME; Watson FG; Oates SC; Miller MA; Conrad PA; Shapiro K; Hardin D; Dominik C; Melli A; Jessup DA; Miller WA Appl Environ Microbiol; 2013 Mar; 79(6):1859-65. PubMed ID: 23315738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]