These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18282023)

  • 1. The self-referential method combined with thermodynamic integration.
    Sweatman MB; Atamas AA; Leyssale JM
    J Chem Phys; 2008 Feb; 128(6):064102. PubMed ID: 18282023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-referential method for linear rigid bodies: application to hard and Lennard-Jones dumbbells.
    Sweatman MB; Atamas A; Leyssale JM
    J Chem Phys; 2009 Jan; 130(2):024101. PubMed ID: 19154013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System-size dependence of the free energy of crystalline solids.
    de Miguel E; Marguta RG; del Río EM
    J Chem Phys; 2007 Oct; 127(15):154512. PubMed ID: 17949178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation.
    Laird BB; Davidchack RL
    J Phys Chem B; 2005 Sep; 109(38):17802-12. PubMed ID: 16853283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-referential Monte Carlo method for calculating the free energy of crystalline solids.
    Sweatman MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016711. PubMed ID: 16090138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the Frenkel-Ladd method to compute the free energy of solids: the Einstein molecule approach.
    Vega C; Noya EG
    J Chem Phys; 2007 Oct; 127(15):154113. PubMed ID: 17949138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid.
    Takahashi K; Yasuoka K; Narumi T
    J Chem Phys; 2007 Sep; 127(11):114511. PubMed ID: 17887861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration free energy of a Model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models.
    Gruziel M; Rudnicki WR; Lesyng B
    J Chem Phys; 2008 Feb; 128(6):064503. PubMed ID: 18282052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulation of adsorption from dilute solutions.
    Billes W; Tscheliessnig R; Fischer J
    Acta Biochim Pol; 2005; 52(3):685-9. PubMed ID: 16082414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute free energy calculations by thermodynamic integration in four spatial dimensions.
    Rodinger T; Howell PL; Pomès R
    J Chem Phys; 2005 Jul; 123(3):34104. PubMed ID: 16080727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation.
    Wu D; Kofke DA
    J Chem Phys; 2005 May; 122(20):204104. PubMed ID: 15945710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy calculation using molecular dynamics simulation combined with the three dimensional reference interaction site model theory. I. Free energy perturbation and thermodynamic integration along a coupling parameter.
    Miyata T; Ikuta Y; Hirata F
    J Chem Phys; 2010 Jul; 133(4):044114. PubMed ID: 20687640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(14):144107. PubMed ID: 15847516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy-energy decomposition from nonequilibrium work trajectories.
    Nummela J; Yassin F; Andricioaei I
    J Chem Phys; 2008 Jan; 128(2):024104. PubMed ID: 18205440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the switching function for nonequilibrium free-energy calculations: an on-the-fly approach.
    Lindberg GE; Berkelbach TC; Wang F
    J Chem Phys; 2009 May; 130(17):174705. PubMed ID: 19425796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration.
    Bruckner S; Boresch S
    J Comput Chem; 2011 May; 32(7):1320-33. PubMed ID: 21425289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation.
    Meirovitch H
    Curr Opin Struct Biol; 2007 Apr; 17(2):181-6. PubMed ID: 17395451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grain-boundary free energy via thermodynamic integration.
    Lusk MT; Fellinger MR; Beale PD
    J Chem Phys; 2006 Feb; 124(6):64707. PubMed ID: 16483229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.