BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18282063)

  • 1. Porosity dependence of electron percolation in nanoporous TiO2 layers.
    Ofir A; Dor S; Grinis L; Zaban A; Dittrich T; Bisquert J
    J Chem Phys; 2008 Feb; 128(6):064703. PubMed ID: 18282063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes.
    Li X; Nazeeruddin MK; Thelakkat M; Barnes PR; Vilar R; Durrant JR
    Phys Chem Chem Phys; 2011 Jan; 13(4):1575-84. PubMed ID: 21082092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response.
    de Tacconi NR; Chenthamarakshan CR; Yogeeswaran G; Watcharenwong A; de Zoysa RS; Basit NA; Rajeshwar K
    J Phys Chem B; 2006 Dec; 110(50):25347-55. PubMed ID: 17165981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the surface permeability of nanoporous particles by pulsed field gradient NMR.
    Krutyeva M; Yang X; Vasenkov S; Kärger J
    J Magn Reson; 2007 Apr; 185(2):300-7. PubMed ID: 17270475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach.
    Gauthier MG; Slater GW
    J Chem Phys; 2008 Feb; 128(6):065103. PubMed ID: 18282074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of methods for determining the pore size distribution and pore-network connectivity of porous carbons.
    Cai Q; Buts A; Biggs MJ; Seaton NA
    Langmuir; 2007 Jul; 23(16):8430-40. PubMed ID: 17602506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
    Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K
    J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid.
    Fabregat-Santiago F; Randriamahazaka H; Zaban A; Garcia-Cañadas J; Garcia-Belmonte G; Bisquert J
    Phys Chem Chem Phys; 2006 Apr; 8(15):1827-33. PubMed ID: 16633668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ordering in porous TiO2 layers on electron diffusion.
    Tirosh S; Dittrich T; Ofir A; Grinis L; Zaban A
    J Phys Chem B; 2006 Aug; 110(33):16165-8. PubMed ID: 16913734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug loading of nanoporous TiO2 films.
    Ayon AA; Cantu M; Chava K; Agrawal CM; Feldman MD; Johnson D; Patel D; Marton D; Shi E
    Biomed Mater; 2006 Dec; 1(4):L11-5. PubMed ID: 18458401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior.
    Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P
    J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porosity effects on electron transport in TiO2 films and its application to dye-sensitized solar cells.
    Liang L; Dai S; Hu L; Kong F; Xu W; Wang K
    J Phys Chem B; 2006 Jun; 110(25):12404-9. PubMed ID: 16800566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous TiO2/polyion thin-film-coated long-period grating sensors for the direct measurement of low-molecular-weight analytes.
    Yang RZ; Dong WF; Meng X; Zhang XL; Sun YL; Hao YW; Guo JC; Zhang WY; Yu YS; Song JF; Qi ZM; Sun HB
    Langmuir; 2012 Jun; 28(23):8814-21. PubMed ID: 22594626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS).
    Balla VK; DeVasConCellos PD; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2009 Jun; 5(5):1831-7. PubMed ID: 19233752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylacetonate anchors for robust functionalization of TiO2 nanoparticles with Mn(II)-terpyridine complexes.
    McNamara WR; Snoeberger RC; Li G; Schleicher JM; Cady CW; Poyatos M; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    J Am Chem Soc; 2008 Oct; 130(43):14329-38. PubMed ID: 18831585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface effects on liquid crystals constrained in nanoscaled pores investigated by field cycling NMR relaxometry and Monte Carlo simulations.
    Grinberg F
    Magn Reson Imaging; 2007 May; 25(4):485-8. PubMed ID: 17466769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.
    O'Regan BC; Durrant JR
    J Phys Chem B; 2006 May; 110(17):8544-7. PubMed ID: 16640403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Island organization of TiO2 hierarchical nanostructures induced by surface wetting and drying.
    Fusi M; Di Fonzo F; Casari CS; Maccallini E; Caruso T; Agostino RG; Bottani CE; Li Bassi A
    Langmuir; 2011 Mar; 27(5):1935-41. PubMed ID: 21247199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.