These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. A Single Hidden Layer Feedforward Network with Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function. Guliyev NJ; Ismailov VE Neural Comput; 2016 Jul; 28(7):1289-304. PubMed ID: 27171269 [TBL] [Abstract][Full Text] [Related]
26. Architecture and statistical model of a pulse-mode digital multilayer neural network. Kim YC; Shanblatt MA IEEE Trans Neural Netw; 1995; 6(5):1109-18. PubMed ID: 18263401 [TBL] [Abstract][Full Text] [Related]
27. The local minima-free condition of feedforward neural networks for outer-supervised learning. Huang DS IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):477-80. PubMed ID: 18255966 [TBL] [Abstract][Full Text] [Related]
28. The No-Prop algorithm: a new learning algorithm for multilayer neural networks. Widrow B; Greenblatt A; Kim Y; Park D Neural Netw; 2013 Jan; 37():182-8. PubMed ID: 23140797 [TBL] [Abstract][Full Text] [Related]
29. A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. Wang GJ; Chen CC IEEE Trans Neural Netw; 1996; 7(3):768-75. PubMed ID: 18263473 [TBL] [Abstract][Full Text] [Related]
30. Comparing support vector machines and feedforward neural networks with similar hidden-layer weights. Romero E; Toppo D IEEE Trans Neural Netw; 2007 May; 18(3):959-63. PubMed ID: 17526367 [TBL] [Abstract][Full Text] [Related]
31. Weight shifting techniques for self-recovery neural networks. Khunasaraphan C; Vanapipat K; Lursinsap C IEEE Trans Neural Netw; 1994; 5(4):651-8. PubMed ID: 18267837 [TBL] [Abstract][Full Text] [Related]
32. A new formulation for feedforward neural networks. Razavi S; Tolson BA IEEE Trans Neural Netw; 2011 Oct; 22(10):1588-98. PubMed ID: 21859600 [TBL] [Abstract][Full Text] [Related]
33. VLSI implementation of neural networks. Wilamowski BM; Binfet J; Kaynak MO Int J Neural Syst; 2000 Jun; 10(3):191-7. PubMed ID: 11011791 [TBL] [Abstract][Full Text] [Related]
34. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
35. Dynamic programming approach to optimal weight selection in multilayer neural networks. Saratchandran P IEEE Trans Neural Netw; 1991; 2(4):465-7. PubMed ID: 18276398 [TBL] [Abstract][Full Text] [Related]
36. An integral upper bound for neural network approximation. Kainen PC; Kůrková V Neural Comput; 2009 Oct; 21(10):2970-89. PubMed ID: 19635020 [TBL] [Abstract][Full Text] [Related]
37. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. Takahashi YK; Kori H; Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477 [TBL] [Abstract][Full Text] [Related]
38. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. Huang GB; Babri HA IEEE Trans Neural Netw; 1998; 9(1):224-9. PubMed ID: 18252445 [TBL] [Abstract][Full Text] [Related]
39. A global optimum approach for one-layer neural networks. Castillo E; Fontenla-Romero O; Guijarro-Berdiñas B; Alonso-Betanzos A Neural Comput; 2002 Jun; 14(6):1429-49. PubMed ID: 12020453 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of convolutional neural networks for visual recognition. Nebauer C IEEE Trans Neural Netw; 1998; 9(4):685-96. PubMed ID: 18252491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]