These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 1828310)
1. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex. Clow DW; Lee SJ; Hammer RP Synapse; 1991 Apr; 7(4):260-8. PubMed ID: 1828310 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the patterns of altered cerebral glucose utilisation produced by competitive and non-competitive NMDA receptor antagonists. Sharkey J; Ritchie IM; Butcher SP; Kelly JS Brain Res; 1996 Sep; 735(1):67-82. PubMed ID: 8905171 [TBL] [Abstract][Full Text] [Related]
3. Effects of MK-801 upon local cerebral glucose utilisation in conscious rats and in rats anaesthetised with halothane. Kurumaji A; McCulloch J J Cereb Blood Flow Metab; 1989 Dec; 9(6):786-94. PubMed ID: 2684992 [TBL] [Abstract][Full Text] [Related]
4. Effects of MK-801 upon local cerebral glucose utilisation in conscious rats following unilateral lesion of caudal entorhinal cortex. Kurumaji A; McCulloch J Brain Res; 1990 Oct; 531(1-2):72-82. PubMed ID: 2289138 [TBL] [Abstract][Full Text] [Related]
5. Differential effects of competitive (CGS19755) and non-competitive (MK 801) NMDA receptor antagonists upon local cerebral blood flow and local cerebral glucose utilisation in the rat. Sharkey J; Ritchie IM; Butcher SP; Kelly JS Brain Res; 1994 Jul; 651(1-2):27-36. PubMed ID: 7922575 [TBL] [Abstract][Full Text] [Related]
6. Comparison of brain metabolic activity patterns induced by ketamine, MK-801 and amphetamine in rats: support for NMDA receptor involvement in responses to subanesthetic dose of ketamine. Duncan GE; Miyamoto S; Leipzig JN; Lieberman JA Brain Res; 1999 Oct; 843(1-2):171-83. PubMed ID: 10528123 [TBL] [Abstract][Full Text] [Related]
7. NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Folbergrová J Exp Neurol; 1994 Dec; 130(2):344-50. PubMed ID: 7867764 [TBL] [Abstract][Full Text] [Related]
8. Intracerebroventricular application of competitive and non-competitive NMDA antagonists induce similar effects upon rat hippocampal electroencephalogram and local cerebral glucose utilization. Boddeke HW; Wiederhold KH; Palacios JM Brain Res; 1992 Jul; 585(1-2):177-83. PubMed ID: 1511299 [TBL] [Abstract][Full Text] [Related]
9. Effects of NMDA antagonists, MK-801 and CPP, upon local cerebral glucose use. Kurumaji A; Nehls DG; Park CK; McCulloch J Brain Res; 1989 Sep; 496(1-2):268-84. PubMed ID: 2553203 [TBL] [Abstract][Full Text] [Related]
10. Competitive and non-competitive NMDA receptor antagonists induce c-Fos expression in the rat anterior, cingulate cortex. Wedzony K; Czyrak A J Physiol Pharmacol; 1996 Sep; 47(3):525-33. PubMed ID: 8877908 [TBL] [Abstract][Full Text] [Related]
11. Regional alterations in brain amino acids after administration of the N-methyl-D-aspartate receptor antagonists MK-801 and CGP 39551 in rats. Löscher W; Hönack D; Fassbender CP Neurosci Lett; 1991 Mar; 124(1):115-8. PubMed ID: 1677457 [TBL] [Abstract][Full Text] [Related]
12. [The influence of intrathecal NMDA receptor antagonist on the isoflurane MAC and on the motor function]. Yamazaki M Masui; 1996 Jan; 45(1):70-6. PubMed ID: 8865728 [TBL] [Abstract][Full Text] [Related]
13. Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Miyamoto S; Leipzig JN; Lieberman JA; Duncan GE Neuropsychopharmacology; 2000 Apr; 22(4):400-12. PubMed ID: 10700659 [TBL] [Abstract][Full Text] [Related]
14. Antagonists of N-methyl-D-aspartate receptors block seizures induced by putrescine in the deep prepiriform cortex. De Sarro GB; Bagetta G; Spagnolo C; Nisticò G Neuropharmacology; 1993 Jan; 32(1):43-50. PubMed ID: 8429916 [TBL] [Abstract][Full Text] [Related]
15. NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat. Gilland E; Hagberg H J Cereb Blood Flow Metab; 1996 Sep; 16(5):1005-13. PubMed ID: 8784246 [TBL] [Abstract][Full Text] [Related]
16. Alterations in regional brain metabolism in genetic and pharmacological models of reduced NMDA receptor function. Duncan G; Miyamoto S; Gu H; Lieberman J; Koller B; Snouwaert J Brain Res; 2002 Oct; 951(2):166-76. PubMed ID: 12270494 [TBL] [Abstract][Full Text] [Related]
17. Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Hargreaves RJ; Rigby M; Smith D; Hill RG Br J Pharmacol; 1993 Sep; 110(1):36-42. PubMed ID: 8220897 [TBL] [Abstract][Full Text] [Related]
18. Dibenzocycloalkenimine (MK-801) stimulates phosphoinositide hydrolysis in rat cerebral cortical slices). Ormandy GC; Li X; Jope RS Neuropharmacology; 1990 Aug; 29(8):779-82. PubMed ID: 2177162 [TBL] [Abstract][Full Text] [Related]
19. Effects of competitive and non-competitive NMDA receptor antagonists on dopamine output in the shell and core subdivisions of the nucleus accumbens. Marcus MM; Mathé JM; Nomikos GG; Svensson TH Neuropharmacology; 2001 Mar; 40(4):482-90. PubMed ID: 11249957 [TBL] [Abstract][Full Text] [Related]
20. Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Folbergrová J; Haugvicová R; Mares P Exp Neurol; 2000 Jan; 161(1):336-45. PubMed ID: 10683299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]