These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18283444)

  • 1. Using 1/f noise to examine planning and control in a discrete aiming task.
    Valdez AB; Amazeen EL
    Exp Brain Res; 2008 May; 187(2):303-19. PubMed ID: 18283444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task specificity and the timing of discrete aiming movements.
    Hsieh TY; Liu YT; Newell KM
    Hum Mov Sci; 2019 Apr; 64():240-251. PubMed ID: 30802800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target dimension affects 1/f noise in aiming.
    Valdez AB; Amazeen EL
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):369-92. PubMed ID: 19781136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The breakdown of Fitts' law in rapid, reciprocal aiming movements.
    Smits-Engelsman BC; Van Galen GP; Duysens J
    Exp Brain Res; 2002 Jul; 145(2):222-30. PubMed ID: 12110963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast-moving target in the Valpar assembly task improved unimanual and bimanual movements in patients with schizophrenia.
    Wang SM; Kuo LC; Ouyang WC; Hsu HM; Ma HI
    Disabil Rehabil; 2013 Sep; 35(19):1608-13. PubMed ID: 23311672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effector mass and trajectory optimization in the online regulation of goal-directed movement.
    Burkitt JJ; Staite V; Yeung A; Elliott D; Lyons JL
    Exp Brain Res; 2015 Apr; 233(4):1097-107. PubMed ID: 25567091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental aspects of the control of manual aiming movements in aligned and non-aligned visual displays.
    Lhuisset L; Proteau L
    Exp Brain Res; 2002 Oct; 146(3):293-306. PubMed ID: 12232686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Müller-Lyer illusion affects the planning and control of manual aiming movements.
    Meegan DV; Glazebrook CM; Dhillon VP; Tremblay L; Welsh TN; Elliott D
    Exp Brain Res; 2004 Mar; 155(1):37-47. PubMed ID: 15064883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action.
    Buchanan JJ; Park JH; Shea CH
    Exp Brain Res; 2006 Nov; 175(4):710-25. PubMed ID: 16917774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive strategies in interception tasks: differences between eye and hand movements.
    Eggert T; Rivas F; Straube A
    Exp Brain Res; 2005 Jan; 160(4):433-49. PubMed ID: 15551090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of real and illusory perturbations on the early trajectory adjustments of goal-directed movements.
    Grierson LE; Lyons J; Elliott D
    J Mot Behav; 2011; 43(5):383-91. PubMed ID: 21861628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The one-target advantage: advanced preparation or online processing?
    Lavrysen A; Helsen WF; Elliott DJ; Adam JJ
    Motor Control; 2002 Jul; 6(3):230-45. PubMed ID: 12122218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of variability of initial kinematics and endpoints of reaching movements.
    Messier J; Kalaska JF
    Exp Brain Res; 1999 Mar; 125(2):139-52. PubMed ID: 10204767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of fast hemiparetic aiming movements toward stationary and moving targets.
    Van Thiel E; Meulenbroek RG; Hulstijn W; Steenbergen B
    Exp Brain Res; 2000 May; 132(2):230-42. PubMed ID: 10853948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy minimization within target-directed aiming: the mediating influence of the number of movements and target size.
    Roberts JW
    Exp Brain Res; 2020 Mar; 238(3):741-749. PubMed ID: 32077987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of memory-guided reaching movements in peripersonal space.
    Heath M; Westwood DA; Binsted G
    Motor Control; 2004 Jan; 8(1):76-106. PubMed ID: 14973339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of execution noise in movement variability.
    van Beers RJ; Haggard P; Wolpert DM
    J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the effect of state anxiety on compensatory and strategic adjustments in the planning of goal-directed aiming.
    Roberts JW; Wilson MR; Skultety JK; Lyons JL
    Acta Psychol (Amst); 2018 Apr; 185():33-40. PubMed ID: 29407243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submovement control processes in discrete aiming as a function of space-time constraints.
    Hsieh TY; Liu YT; Newell KM
    PLoS One; 2017; 12(12):e0189328. PubMed ID: 29281670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.