BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18283800)

  • 1. Detecting genomic aberrations by fluorescence in situ hybridization with quantum dots-labeled probes.
    Jiang Z; Li R; Todd NW; Stass SA; Jiang F
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4254-9. PubMed ID: 18283800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes.
    Hwang G; Lee H; Lee J
    Biochem Biophys Res Commun; 2015 Nov; 467(2):328-33. PubMed ID: 26449454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates.
    Ma L; Wu SM; Huang J; Ding Y; Pang DW; Li L
    Chromosoma; 2008 Apr; 117(2):181-7. PubMed ID: 18046569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dots as new-generation fluorochromes for FISH: an appraisal.
    Ioannou D; Tempest HG; Skinner BM; Thornhill AR; Ellis M; Griffin DK
    Chromosome Res; 2009; 17(4):519-30. PubMed ID: 19644760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human metaphase chromosome FISH using quantum dot conjugates.
    Knoll JH
    Methods Mol Biol; 2007; 374():55-66. PubMed ID: 17237529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct in situ hybridization with oligonucleotide functionalized quantum dot probes.
    Bentolila LA
    Methods Mol Biol; 2010; 659():147-63. PubMed ID: 20809309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates.
    Bentolila LA; Weiss S
    Cell Biochem Biophys; 2006; 45(1):59-70. PubMed ID: 16679564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protecting Quantum Dot Fluorescence from Quenching to Achieve a Reliable Automated Multiplex Fluorescence In Situ Hybridization Assay.
    Zhang W; Hubbard A; Pang L; Parkinson LB; Brunhoeber P; Wang Y; Tang L
    J Biomed Nanotechnol; 2015 Sep; 11(9):1583-96. PubMed ID: 26485928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.
    Chan P; Yuen T; Ruf F; Gonzalez-Maeso J; Sealfon SC
    Nucleic Acids Res; 2005 Oct; 33(18):e161. PubMed ID: 16224100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-to-one quantum dot-labeled single long DNA probes.
    He S; Huang BH; Tan J; Luo QY; Lin Y; Li J; Hu Y; Zhang L; Yan S; Zhang Q; Pang DW; Li L
    Biomaterials; 2011 Aug; 32(23):5471-7. PubMed ID: 21546079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon.
    Wu SM; Tian ZQ; Zhang ZL; Huang BH; Jiang P; Xie ZX; Pang DW
    Biosens Bioelectron; 2010 Oct; 26(2):491-6. PubMed ID: 20729070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently labeled alphoid DNA probes.
    Yurov YB; Soloviev IV; Vorsanova SG; Marcais B; Roizes G; Lewis R
    Hum Genet; 1996 Mar; 97(3):390-8. PubMed ID: 8786090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated multiplexing quantum dots in situ hybridization assay for simultaneous detection of ERG and PTEN gene status in prostate cancer.
    Zhang W; Hubbard A; Brunhoeber P; Wang Y; Tang L
    J Mol Diagn; 2013 Nov; 15(6):754-64. PubMed ID: 23994645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates.
    Choi Y; Kim HP; Hong SM; Ryu JY; Han SJ; Song R
    Small; 2009 Sep; 5(18):2085-91. PubMed ID: 19517489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mRNA FISH with compact quantum dots.
    Liu Y; Le P; Lim SJ; Ma L; Sarkar S; Han Z; Murphy SJ; Kosari F; Vasmatzis G; Cheville JC; Smith AM
    Nat Commun; 2018 Oct; 9(1):4461. PubMed ID: 30367061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent in situ hybridization of DNA probes in the interphase and metaphase stages of the cell cycle.
    Cannizzaro LA
    Methods Mol Biol; 2013; 946():61-83. PubMed ID: 23179826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization.
    Balázs M; Koroknai V; Szász I; Ecsedi S
    Methods Mol Biol; 2018; 1726():85-100. PubMed ID: 29468546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of receptor tyrosine kinase gene amplification on the example of FGFR1.
    Boehm D; von Mässenhausen A; Perner S
    Methods Mol Biol; 2015; 1233():67-79. PubMed ID: 25319890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.