BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18283829)

  • 21. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule.
    Wang L; Pan K; Zhang L; Zhou C; Li Y; Zhu B; Han J
    Biomater Sci; 2021 Mar; 9(6):2162-2173. PubMed ID: 33496686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on tribological mechanism for multi-layer porous structure of diatom frustule.
    Meng F; Gao G; Jia Z
    Microb Ecol; 2015 Jan; 69(1):45-58. PubMed ID: 25204749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diatom-based label-free optical biosensor for biomolecules.
    Viji S; Anbazhagi M; Ponpandian N; Mangalaraj D; Jeyanthi S; Santhanam P; Devi AS; Viswanathan C
    Appl Biochem Biotechnol; 2014 Oct; 174(3):1166-73. PubMed ID: 24989453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of photocatalyst using diatom frustules by liquid phase deposition method.
    Umemura K; Gao Y; Nishikawa T
    J Nanosci Nanotechnol; 2010 Aug; 10(8):4883-8. PubMed ID: 21125823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair.
    Reid A; Buchanan F; Julius M; Walsh PJ
    J Mater Chem B; 2021 Sep; 9(34):6728-6737. PubMed ID: 34346480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Efficient Method of Observing Diatom Frustules via Digital Holographic Microscopy.
    Saito M; Kitamura M; Ide Y; Nguyen MH; Le BD; Mai AT; Miyashiro D; Mayama S; Umemura K
    Microsc Microanal; 2022 Sep; ():1-5. PubMed ID: 36124414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydraulic retention time governed the micro/nanostructures of titanium-incorporated diatoms and their photocatalytic activity.
    Li Y; Zhang C; Hu Z
    Environ Pollut; 2024 Mar; 345():123398. PubMed ID: 38272163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Analysis of the Light Modulation by the Frustule of
    Ghobara M; Oschatz C; Fratzl P; Reissig L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification of lysozyme from chicken egg white using diatom frustules.
    Guan YF; Lai SY; Lin CS; Suen SY; Wang MY
    Food Chem; 2019 Jul; 286():483-490. PubMed ID: 30827636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Practical method to determine the effective zero-point of indentation depth for continuous stiffness measurement nanoindentation test with Berkovich tip.
    Geng D; Yu H; Okuno Y; Kondo S; Kasada R
    Sci Rep; 2022 Apr; 12(1):6391. PubMed ID: 35430627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly-porous diatom biosilica stationary phase for thin-layer chromatography.
    Kraai JA; Rorrer GL; Wang AX
    J Chromatogr A; 2019 Apr; 1591():162-170. PubMed ID: 30683526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The UV filtering potential of drop-casted layers of frustules of three diatom species.
    Su Y; Lenau TA; Gundersen E; Kirkensgaard JJK; Maibohm C; Pinti J; Ellegaard M
    Sci Rep; 2018 Jan; 8(1):959. PubMed ID: 29343724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotemplated diatom silica-titania materials for air purification.
    Van Eynde E; Tytgat T; Smits M; Verbruggen SW; Hauchecorne B; Lenaerts S
    Photochem Photobiol Sci; 2013 Apr; 12(4):690-5. PubMed ID: 23128085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Diatom Staurosirella pinnata for Photoactive Material Production.
    De Angelis R; Melino S; Prosposito P; Casalboni M; Lamastra FR; Nanni F; Bruno L; Congestri R
    PLoS One; 2016; 11(11):e0165571. PubMed ID: 27828985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence correlation spectroscopy to study diffusion through diatom nanopores.
    Bhatta H; Enderlein J; Rosengarten G
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6760-6. PubMed ID: 19908596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevalence of diatom frustules in non-vegetarian foodstuffs and its implications in interpreting identification of diatom frustules in drowning cases.
    Yen LY; Jayaprakash PT
    Forensic Sci Int; 2007 Jul; 170(1):1-7. PubMed ID: 17023133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a Floatable Micron-Sized Enzyme Device Using Diatom Frustules.
    Lin NS; Hirayama K; Kitamura M; Koide S; Kitajima H; Harada T; Mayama S; Umemura K
    ACS Omega; 2023 Jun; 8(23):21145-21153. PubMed ID: 37332799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and physical-chemical properties of baked nanoporous frustules.
    Umemura K; Noguchi Y; Ichinose T; Hirose Y; Mayama S
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5220-4. PubMed ID: 21125874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.
    Hamm CE
    J Nanosci Nanotechnol; 2005 Jan; 5(1):108-19. PubMed ID: 15762169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.