These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 18284963)
1. Optimized Stoneley wave device by proper choice of glass overcoat. Irino T; Shimizu Y IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):159-67. PubMed ID: 18284963 [TBL] [Abstract][Full Text] [Related]
2. Super high electromechanical coupling and zero temperature coefficient surface acoustic wave substrates in KNbO(3) single crystal. Yamanouchi K; Odagawa H IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):700-5. PubMed ID: 18238470 [TBL] [Abstract][Full Text] [Related]
3. Propagation of boundary acoustic waves along a ZnO layer between two materials. Irino T; Shirosaki Y; Shimizu Y IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):701-7. PubMed ID: 18290205 [TBL] [Abstract][Full Text] [Related]
4. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices. Tsai CC; Chu SY; Lu CH IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates. Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA; Pasachhe A Ultrasonics; 2006 Dec; 44 Suppl 1():e787-91. PubMed ID: 16806378 [TBL] [Abstract][Full Text] [Related]
6. Love wave propagation in functionally graded piezoelectric material layer. Du J; Jin X; Wang J; Xian K Ultrasonics; 2007 Mar; 46(1):13-22. PubMed ID: 17107699 [TBL] [Abstract][Full Text] [Related]
7. Effect of a ferroelectric inversion layer on the temperature characteristics of SH-Type surface acoustic waves on 36 degrees Y-X LiTaO (3) substrates. Nakamura K; Tourlog A IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):872-5. PubMed ID: 18263277 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of modified lead titanate piezoceramics with zero temperature coefficient and its application on SAW devices. Chu SY; Chen TY IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):663-7. PubMed ID: 15244279 [TBL] [Abstract][Full Text] [Related]
9. Optimized, Omnidirectional Surface Acoustic Wave Source: 152° Y-Rotated Cut of Lithium Niobate for Acoustofluidics. Zhang N; Mei J; Gopesh T; Friend J IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2176-2186. PubMed ID: 32396083 [TBL] [Abstract][Full Text] [Related]
10. Love waves in SiO(2) layers on STW-resonators based on LiTaO(3). Barié N; Wessa T; Bruns M; Rapp M Talanta; 2004 Jan; 62(1):71-9. PubMed ID: 18969265 [TBL] [Abstract][Full Text] [Related]
11. Assessment of langatate material constants and temperature coefficients using SAW delay line measurements. Sturtevant BT; Pereira da Cunha M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):533-9. PubMed ID: 20211767 [TBL] [Abstract][Full Text] [Related]
12. Transformation of acoustic waves in periodic metal grating sandwiched between piezoelectric and dielectric. Naumenko NF; Abbott BP IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2181-7. PubMed ID: 21989881 [TBL] [Abstract][Full Text] [Related]
13. Surface and pseudo surface acoustic waves in langatate: predictions and measurements. Pereira da Cunha M; Malocha DC; Adler EL; Casey KJ IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1291-9. PubMed ID: 12243580 [TBL] [Abstract][Full Text] [Related]
15. Investigation of solid/solid interface waves with laser ultrasonics. Han QB; Qian ML; Wang H Ultrasonics; 2006 Dec; 44 Suppl 1():e1323-7. PubMed ID: 16920174 [TBL] [Abstract][Full Text] [Related]
16. Love waves in functionally graded piezoelectric materials by stiffness matrix method. Ben Salah I; Wali Y; Ben Ghozlen MH Ultrasonics; 2011 Apr; 51(3):310-6. PubMed ID: 21035829 [TBL] [Abstract][Full Text] [Related]
17. Growth of A1N piezoelectric film on diamond for high-frequency surface acoustic wave devices. Benetti M; Cannatà D; Di Pietrantonio F; Verona E IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1806-11. PubMed ID: 16382632 [TBL] [Abstract][Full Text] [Related]
18. Change in piezoelectric boundary acoustic wave characteristics with overlay and metal grating materials. Wang Y; Hashimoto KY; Omori T; Yamaguchi M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):16-22. PubMed ID: 20040421 [TBL] [Abstract][Full Text] [Related]
19. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure. Cao X; Shi J; Jin F IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1253-7. PubMed ID: 22718875 [TBL] [Abstract][Full Text] [Related]
20. Evaluation and selection of LiNbO(3) and LiTaO(3) substrates for SAW devices by the LFB ultrasonic material characterization system. Kushibiki J; Ohashi Y; Ono Y IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1068-76. PubMed ID: 18238642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]