These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 1828501)
1. Spectral sensitivity, structure and activation of eukaryotic rhodopsins: activation spectroscopy of rhodopsin analogs in Chlamydomonas. Foster KW; Saranak J; Dowben PA J Photochem Photobiol B; 1991 Mar; 8(4):385-408. PubMed ID: 1828501 [TBL] [Abstract][Full Text] [Related]
2. Photophysiological functions of visual pigments. Yoshizawa T Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325 [TBL] [Abstract][Full Text] [Related]
3. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Foster KW; Saranak J; Patel N; Zarilli G; Okabe M; Kline T; Nakanishi K Nature; 1984 Oct 25-31; 311(5988):756-9. PubMed ID: 6493336 [TBL] [Abstract][Full Text] [Related]
4. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Lawson MA; Zacks DN; Derguini F; Nakanishi K; Spudich JL Biophys J; 1991 Dec; 60(6):1490-8. PubMed ID: 1777569 [TBL] [Abstract][Full Text] [Related]
5. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Koutalos Y; Ebrey TG; Tsuda M; Odashima K; Lien T; Park MH; Shimizu N; Derguini F; Nakanishi K; Gilson HR Biochemistry; 1989 Mar; 28(6):2732-9. PubMed ID: 2525050 [TBL] [Abstract][Full Text] [Related]
6. Evidence from Chlamydomonas on the photoactivation of rhodopsins without isomerization of their chromophore. Foster KW; Saranak J; Krane S; Johnson RL; Nakanishi K Chem Biol; 2011 Jun; 18(6):733-42. PubMed ID: 21700209 [TBL] [Abstract][Full Text] [Related]
7. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal. Han M; Groesbeek M; Smith SO; Sakmar TP Biochemistry; 1998 Jan; 37(2):538-45. PubMed ID: 9425074 [TBL] [Abstract][Full Text] [Related]
8. 10,20-Methanorhodopsins: (7E,9E,13E)-10,20-methanorhodopsin and (7E,9Z,13Z)-10,20-methanorhodopsin. 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability. de Grip WJ; van Oostrum J; Bovee-Geurts PH; van der Steen R; van Amsterdam LJ; Groesbeek M; Lugtenburg J Eur J Biochem; 1990 Jul; 191(1):211-20. PubMed ID: 2143135 [TBL] [Abstract][Full Text] [Related]
9. Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues. Fukada Y; Okano T; Shichida Y; Yoshizawa T; Trehan A; Mead D; Denny M; Asato AE; Liu RS Biochemistry; 1990 Mar; 29(12):3133-40. PubMed ID: 2140051 [TBL] [Abstract][Full Text] [Related]
10. Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal. Foster KW; Saranak J; Derguini F; Zarrilli GR; Johnson R; Okabe M; Nakanishi K Biochemistry; 1989 Jan; 28(2):819-24. PubMed ID: 2713348 [TBL] [Abstract][Full Text] [Related]
11. The nature of the primary photochemical events in rhodopsin and isorhodopsin. Birge RR; Einterz CM; Knapp HM; Murray LP Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants. Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753 [TBL] [Abstract][Full Text] [Related]
13. All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Derguini F; Mazur P; Nakanishi K; Starace DM; Saranak J; Foster KW Photochem Photobiol; 1991 Dec; 54(6):1017-21. PubMed ID: 1775526 [TBL] [Abstract][Full Text] [Related]
14. Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Spudich JL; McCain DA; Nakanishi K; Okabe M; Shimizu N; Rodman H; Honig B; Bogomolni RA Biophys J; 1986 Feb; 49(2):479-83. PubMed ID: 2937462 [TBL] [Abstract][Full Text] [Related]
15. All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Hegemann P; Gärtner W; Uhl R Biophys J; 1991 Dec; 60(6):1477-89. PubMed ID: 19431816 [TBL] [Abstract][Full Text] [Related]
16. Constraints of opsin structure on the ligand-binding site: studies with ring-fused retinals. Hirano T; Lim IT; Kim DM; Zheng XG; Yoshihara K; Oyama Y; Imai H; Shichida Y; Ishiguro M Photochem Photobiol; 2002 Dec; 76(6):606-15. PubMed ID: 12511040 [TBL] [Abstract][Full Text] [Related]
17. Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. Fukada Y; Shichida Y; Yoshizawa T; Ito M; Kodama A; Tsukida K Biochemistry; 1984 Nov; 23(24):5826-32. PubMed ID: 6098298 [TBL] [Abstract][Full Text] [Related]
18. Analogue pigment studies of chromophore-protein interactions in metarhodopsins. Renk G; Crouch RK Biochemistry; 1989 Jan; 28(2):907-12. PubMed ID: 2540811 [TBL] [Abstract][Full Text] [Related]
19. Constraints of the 9-methyl group binding pocket of the rhodopsin chromophore probed by 9-halogeno substitution. Wang Y; Bovee-Geurts PH; Lugtenburg J; DeGrip WJ Biochemistry; 2004 Nov; 43(46):14802-10. PubMed ID: 15544351 [TBL] [Abstract][Full Text] [Related]
20. Evidence for the archaebacterial-type conformation about the bond between the beta-ionone ring and the polyene chain of the chromophore retinal in chlamyrhodopsin. Sakamoto M; Wada A; Akai A; Ito M; Goshima T; Takahashi T FEBS Lett; 1998 Sep; 434(3):335-8. PubMed ID: 9742950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]