These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18285051)

  • 1. Sensitivity of quartz oscillators to the environment: characterization methods and pitfalls.
    Gagnepain JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):347-54. PubMed ID: 18285051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acceleration sensitivity of quartz crystal oscillators: a review.
    Filler RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):297-305. PubMed ID: 18290155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental sensitivities of quartz oscillators.
    Walls FL; Gagnepain JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):241-9. PubMed ID: 18263142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz crystal resonator g sensitivity measurement methods and recent results.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):386-92. PubMed ID: 18285055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase noise measurements of 10-MHz BVA quartz crystal resonators.
    Sthal F; Mourey M; Marionnet F; Walls WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):369-73. PubMed ID: 18238552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of thermosensitive quartz sensor for thermal regulation at cryogenic temperatures: application to microwave sapphire resonator references.
    Kersale Y; Lardet-Vieudrin F; Chaubet M; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):427-31. PubMed ID: 18238560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-sensitivity mapping for surface acoustic waves on quartz.
    Bigler E; Hauden D; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):57-62. PubMed ID: 18284950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term performance of precision crystal oscillators in a near-Earth orbital environment.
    Rueger LJ; Norton JR; Lasewicz PT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):528-31. PubMed ID: 18263216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of quartz crystal oscillator flicker-of-frequency and white phase noise (floor) levels and acceleration sensitivity via use of multiple resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):427-30. PubMed ID: 18263203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolated electrodeless high-frequency quartz crystal microbalance for immunosensors.
    Ogi H; Motoshisa K; Matsumoto T; Hatanaka K; Hirao M
    Anal Chem; 2006 Oct; 78(19):6903-9. PubMed ID: 17007513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulational method of quartz crystal oscillator frequency stabilization.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1476-84. PubMed ID: 18249995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expected quality factor of a simple tuned oscillator.
    Tan KH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):886-99. PubMed ID: 21622044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications.
    Montagut YJ; García JV; Jiménez Y; March C; Montoya A; Arnau A
    Rev Sci Instrum; 2011 Jun; 82(6):064702. PubMed ID: 21721715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quartz resonator signatures under Newtonian liquid loading for initial instrument check.
    Cho NJ; D'Amour JN; Stalgren J; Knoll W; Kanazawa K; Frank CW
    J Colloid Interface Sci; 2007 Nov; 315(1):248-54. PubMed ID: 17706241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless precision piezoelectric thermometer using an RF excitation-detection technique with an NMR probe.
    Wang DJ; Leigh JS
    J Magn Reson B; 1994 Sep; 105(1):25-30. PubMed ID: 7921669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field effects in RUS measurements.
    Darling TW; Allured B; Tencate JA; Carpenter MA
    Ultrasonics; 2010 Feb; 50(2):145-9. PubMed ID: 19850314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartz resonator instabilities under cryogenic conditions.
    Goryachev M; Galliou S; Abbe P; Bourgeois PY; Grop S; Dubois B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):21-9. PubMed ID: 22293732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lam e-mode miniaturized quartz temperature sensors.
    Kanie H; Kawaehima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of temperature and viscosity effects for surfactant adsorption measurements made using the electrochemical quartz crystal microbalance.
    Ryu DY; Free ML
    J Colloid Interface Sci; 2003 Aug; 264(2):402-6. PubMed ID: 16256658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.