These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18285059)

  • 1. Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting media.
    Trahey G; Zhao D; Miglin JA; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):418-27. PubMed ID: 18285059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time adaptive ultrasonic imaging system.
    Trahey GE; Zhao D; Freiburger PD; Carroll BA
    Invest Radiol; 1990 Sep; 25(9):1029-33. PubMed ID: 2211045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase aberration correction using echo signals from moving targets. II: Experimental system and results.
    Bohs LN; Zhao D; Trahey GE
    Ultrason Imaging; 1992 Apr; 14(2):111-20. PubMed ID: 1604753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A speckle target adaptive imaging technique in the presence of distributed aberrations.
    Ng GC; Freiburger PD; Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):140-51. PubMed ID: 18244111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel processing techniques for the speckle brightness phase aberration correction algorithm.
    Freiburger PD; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):431-44. PubMed ID: 18244141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor.
    Nock L; Trahey GE; Smith SW
    J Acoust Soc Am; 1989 May; 85(5):1819-33. PubMed ID: 2732378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. I. Algorithm synthesis and experimental results [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):259-70. PubMed ID: 18244124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of image quality factors for phase aberration correction with diffuse and point targets: theory and experiments.
    Zhao D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(2):125-32. PubMed ID: 18267566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation processing for correction of phase distortions in subaperture imaging.
    Tavh B; Karaman M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1477-88. PubMed ID: 18244344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical analysis of phase aberration correction using image quality factors in coherent imaging systems.
    Zhao D; Trahey GE
    IEEE Trans Med Imaging; 1992; 11(3):446-52. PubMed ID: 18222886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time reversal of ultrasonic fields. Il. Experimental results.
    Wu F; Thomas JL; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):567-78. PubMed ID: 18267668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. I. Basic principles.
    Nock LF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):489-95. PubMed ID: 18267660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photorefractive processing for large adaptive phased arrays.
    Weverka RT; Wagner K; Sarto A
    Appl Opt; 1996 Mar; 35(8):1344-66. PubMed ID: 21085246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of acoustical speckle in the presence of phase aberration. Part I: First order statistics.
    Trahey GE; Smith SW
    Ultrason Imaging; 1988 Jan; 10(1):12-28. PubMed ID: 3291366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle reduction in pulse-echo ultrasonic imaging using a two-dimensional receiving array.
    Giesey JJ; Carson PL; Fitting DW; Meyer CR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):167-73. PubMed ID: 18263133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time reversal of ultrasonic fields. I. Basic principles.
    Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):555-66. PubMed ID: 18267667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VLSI circuits for adaptive digital beamforming in ultrasound imaging.
    Karaman M; Atalar A; Koymen H
    IEEE Trans Med Imaging; 1993; 12(4):711-20. PubMed ID: 18218466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accommodation of speckle in object-based phasing.
    Tyler GA
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):722-33. PubMed ID: 22561930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division.
    Behar V; Adam D
    Ultrasonics; 2005 Dec; 43(10):777-88. PubMed ID: 16087207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.