BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18285064)

  • 1. Finite-element analysis of a quartz digital accelerometer.
    Reedy ER; Kass WJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):464-74. PubMed ID: 18285064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resonant sensor composed of quartz double ended tuning fork and silicon substrate for digital acceleration measurement.
    Li C; Zhao Y; Cheng R; Yu Z; Liu Y
    Rev Sci Instrum; 2014 Mar; 85(3):035004. PubMed ID: 24689613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift.
    Li B; Zhao Y; Li C; Cheng R; Sun D; Wang S
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Differential Resonant Voltage Sensor Consisting of Piezo Bimorph and Quartz Crystal Double-Ended Tuning Fork Resonators.
    Huang Z; Bian L
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity.
    Zhang J; Su Y; Shi Q; Qiu AP
    Sensors (Basel); 2015 Dec; 15(12):30293-310. PubMed ID: 26633425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design analysis of miniature quartz resonator using two-dimensional finite element model.
    Huang ZG; Chen ZY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1145-54. PubMed ID: 21693396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Optimization of a Compact Double-Ended-Tuning-Fork-Based Resonant Accelerometer for Smart Spindle Applications.
    Chen YH; Li WC; Xiao XW; Yang CC; Liu CH
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer.
    Liang J; Zhang L; Wang L; Dong Y; Ueda T
    Sensors (Basel); 2015 Sep; 15(9):22049-59. PubMed ID: 26340632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, fabrication, and characterization of a high-sensitivity integrated quartz vibrating beam accelerometer.
    Li C; Xue H; Zhao Y
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38535486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Self-Temperature Compensation Barometer Based on All-Quartz Resonant Pressure Sensor.
    Han D; Yuan S; Feng C; Yang T
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of a Lagrangian, high-frequency plate element for the static temperature behavior of low-frequency quartz resonators.
    Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):788-99. PubMed ID: 18290216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):785-98. PubMed ID: 22547289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on micro-leverage in monolithic quartz resonant accelerometer.
    Li C; Han C; Zhao Y; Zhang Q; Li B
    Rev Sci Instrum; 2021 Feb; 92(2):025005. PubMed ID: 33648126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated packaged resonant accelerometer with temperature compensation.
    Li B; Li C; Zhao Y; Han C; Zhang Q
    Rev Sci Instrum; 2020 Oct; 91(10):105004. PubMed ID: 33138605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate.
    Yong YK; Stewart JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the resonant frequency of piezoelectric tube scanners through three-dimensional finite element modeling of a tube assembly.
    Zareian Jahromi SA; Salomons M; Sun Q; Wolkow RA
    Rev Sci Instrum; 2008 Jul; 79(7):076104. PubMed ID: 18681741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic finite element analysis of a craniofacial finite element model.
    Berthaume MA; Dechow PC; Iriarte-Diaz J; Ross CF; Strait DS; Wang Q; Grosse IR
    J Theor Biol; 2012 May; 300():242-53. PubMed ID: 22306513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.