These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18285069)

  • 1. NxN square-element ultrasound phased-array applicator: simulated temperature distributions associated with directly synthesized heating patterns.
    Ibbini MS; Ebbini ES; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):491-500. PubMed ID: 18285069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A field conjugation method for direct synthesis of hyperthermia phases-array heating patterns.
    Ibbini MS; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):3-9. PubMed ID: 18284943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The concentric-ring phased-array hyperthermia applicator: problems associated with directly synthesized annular heating patterns.
    Ibbini MS; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):574-7. PubMed ID: 18290236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy.
    Ebbini ES; Umemura SI; Ibbini M; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):561-72. PubMed ID: 18290188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.
    Ibbini MS; Cain CA
    Int J Hyperthermia; 1990; 6(2):401-19. PubMed ID: 2324578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia.
    Ebbini ES; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):540-8. PubMed ID: 18290231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct computation of ultrasound phased-array driving signals from a specified temperature distribution for hyperthermia.
    McGough RJ; Ebbini ES; Cain CA
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):825-35. PubMed ID: 1505996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study.
    Ho CS; Ju KC; Cheng TY; Chen YY; Lin WL
    Phys Med Biol; 2007 Aug; 52(15):4585-99. PubMed ID: 17634652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.
    Payne A; Vyas U; Todd N; de Bever J; Christensen DA; Parker DL
    Med Phys; 2011 Sep; 38(9):4971-81. PubMed ID: 21978041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of temperature responses to diffused ultrasound focal fields produced by a sector-vortex phased array.
    Umemura SI; Cain CA
    Int J Hyperthermia; 1990; 6(3):641-54. PubMed ID: 2376675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial control of thermal coagulation using a multi-element interstitial ultrasound applicator with internal cooling.
    Deardorff DL; Diederich CJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):170-8. PubMed ID: 18238528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia.
    Buchanan MT; Hynynen K
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1178-87. PubMed ID: 7851919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and optimization of an aperiodic ultrasound phased array for intracavitary prostate thermal therapies.
    Hutchinson EB; Buchanan MT; Hynynen K
    Med Phys; 1996 May; 23(5):767-76. PubMed ID: 8724752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of an adaptive feedback algorithm for hot spot reduction in radio-frequency phased-array hyperthermia.
    Fenn AJ; King GA
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):273-80. PubMed ID: 8682539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of phase errors on field patterns generated by an ultrasound phased-array hyperthermia applicator.
    Wang H; Ebbini E; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):521-31. PubMed ID: 18267616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic phased arrays with variable geometric focusing for hyperthermia applications.
    Yoon YJ; Benkeser PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):273-8. PubMed ID: 18263147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic waveguide applicator arrays for interstitial heating: a model study.
    Jarosz BJ; Kaytar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):806-14. PubMed ID: 18244232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue.
    Daum DR; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1254-68. PubMed ID: 18244318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays.
    Seip R; Vanbaren P; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):706-13. PubMed ID: 18263259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.