These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 18285356)
1. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Weiss-Schneeweiss H; Tremetsberger K; Schneeweiss GM; Parker JS; Stuessy TF Ann Bot; 2008 May; 101(7):909-18. PubMed ID: 18285356 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). Jang TS; Emadzade K; Parker J; Temsch EM; Leitch AR; Speta F; Weiss-Schneeweiss H BMC Evol Biol; 2013 Jul; 13():136. PubMed ID: 23819574 [TBL] [Abstract][Full Text] [Related]
3. Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). Weiss-Schneeweiss H; Schneeweiss GM; Stuessy TF; Mabuchi T; Park JM; Jang CG; Sun BY New Phytol; 2007; 174(3):669-682. PubMed ID: 17447921 [TBL] [Abstract][Full Text] [Related]
4. The evolutionary history of the white-rayed species of Melampodium (Asteraceae) involved multiple cycles of hybridization and polyploidization. Rebernig CA; Weiss-Schneeweiss H; Blöch C; Turner B; Stuessy TF; Obermayer R; Villaseñor JL; Schneeweiss GM Am J Bot; 2012 Jun; 99(6):1043-57. PubMed ID: 22645096 [TBL] [Abstract][Full Text] [Related]
5. Karyotype studies on populations of two Hypochaeris species (H. catharinensis and H. lutea), Asteraceae, endemics to southern Brazil. Fiorin FG; Ruas PM; Ortiz MA; Urtubey E; Matzenbacher NI; Ruas CF Genet Mol Res; 2013 Jun; 12(2):1849-58. PubMed ID: 23315863 [TBL] [Abstract][Full Text] [Related]
6. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. Garcia S; Panero JL; Siroky J; Kovarik A BMC Plant Biol; 2010 Aug; 10():176. PubMed ID: 20712858 [TBL] [Abstract][Full Text] [Related]
7. The Chromosome Number and rDNA Loci Evolution in Yucel G; Betekhtin A; Cabi E; Tuna M; Hasterok R; Kolano B Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232345 [TBL] [Abstract][Full Text] [Related]
8. Molecular phylogeny of the genus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomal evolution. Cerbah M; Souza-Chies T; Jubier MF; Lejeune B; Siljak-Yakovlev S Mol Biol Evol; 1998 Mar; 15(3):345-54. PubMed ID: 9501501 [TBL] [Abstract][Full Text] [Related]
9. Cytogenetic and phylogenetic studies of diploid and polyploid members of tribe Anemoninae (Ranunculaceae). Mlinarec J; Satović Z; Mihelj D; Malenica N; Besendorfer V Plant Biol (Stuttg); 2012 May; 14(3):525-36. PubMed ID: 22188120 [TBL] [Abstract][Full Text] [Related]
10. Cytogenetic evidences on the evolutionary relationships between the tetraploids of the section Rhizomatosae and related diploid species (Arachis, Leguminosae). Ortiz AM; Robledo G; Seijo G; Valls JFM; Lavia GI J Plant Res; 2017 Sep; 130(5):791-807. PubMed ID: 28536982 [TBL] [Abstract][Full Text] [Related]
11. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). Rosato M; Álvarez I; Nieto Feliner G; Rosselló JA PLoS One; 2017; 12(10):e0187131. PubMed ID: 29088249 [TBL] [Abstract][Full Text] [Related]
12. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database. Garcia S; Kovařík A; Leitch AR; Garnatje T Plant J; 2017 Mar; 89(5):1020-1030. PubMed ID: 27943584 [TBL] [Abstract][Full Text] [Related]
13. Characterization, genomic organization and chromosomal distribution of Ty1-copia retrotransposons in species of Hypochaeris (Asteraceae). Ruas CF; Weiss-Schneeweiss H; Stuessy TF; Samuel MR; Pedrosa-Harand A; Tremetsberger K; Ruas PM; Schlüter PM; Ortiz Herrera MA; König C; Matzenbacher NI Gene; 2008 Apr; 412(1-2):39-49. PubMed ID: 18302977 [TBL] [Abstract][Full Text] [Related]
14. rDNA Loci Evolution in the Genus Glechoma (Lamiaceae). Jang TS; McCann J; Parker JS; Takayama K; Hong SP; Schneeweiss GM; Weiss-Schneeweiss H PLoS One; 2016; 11(11):e0167177. PubMed ID: 27870903 [TBL] [Abstract][Full Text] [Related]
15. Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I genome. Taketa S; Ando H; Takeda K; von Bothmer R Heredity (Edinb); 2001 May; 86(Pt 5):522-30. PubMed ID: 11554968 [TBL] [Abstract][Full Text] [Related]
17. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Zhang ZT; Yang SQ; Li ZA; Zhang YX; Wang YZ; Cheng CY; Li J; Chen JF; Lou QF Genome; 2016 Jul; 59(7):449-57. PubMed ID: 27334092 [TBL] [Abstract][Full Text] [Related]
19. Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Urdampilleta JD; Coulleri JP; Ferrucci MS; Forni-Martins ER Plant Biol (Stuttg); 2013 Sep; 15(5):868-81. PubMed ID: 23126229 [TBL] [Abstract][Full Text] [Related]
20. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Vaio M; Speranza P; Valls JF; Guerra M; Mazzella C Ann Bot; 2005 Aug; 96(2):191-200. PubMed ID: 15911540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]