These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18285846)

  • 1. Single-shot spatially resolved characterization of laser-induced shock waves in water.
    Noack J; Vogel A
    Appl Opt; 1998 Jul; 37(19):4092-9. PubMed ID: 18285846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water.
    Juhasz T; Hu XH; Turi L; Bor Z
    Lasers Surg Med; 1994; 15(1):91-8. PubMed ID: 7997052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of focusing conditions on laser-induced shock waves at titanium-water interface.
    Nath A; Khare A
    Appl Opt; 2011 Jul; 50(19):3275-81. PubMed ID: 21743529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved study of laser initiated shock wave propagation in superfluid
    Garcia A; Buelna X; Popov E; Eloranta J
    J Chem Phys; 2016 Sep; 145(12):124504. PubMed ID: 27782630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-frame multi-exposure shock wave imaging and pressure measurements.
    Mur J; Reuter F; Kočica JJ; Lokar Ž; Petelin J; Agrež V; Ohl CD; Petkovšek R
    Opt Express; 2022 Oct; 30(21):37664-37674. PubMed ID: 36258350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct visualization of laser-driven focusing shock waves.
    Pezeril T; Saini G; Veysset D; Kooi S; Fidkowski P; Radovitzky R; Nelson KA
    Phys Rev Lett; 2011 May; 106(21):214503. PubMed ID: 21699304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.
    Lukač N; Jezeršek M
    Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of exothermic chemical reactions on laser-induced shock waves.
    Gottfried JL
    Phys Chem Chem Phys; 2014 Oct; 16(39):21452-66. PubMed ID: 25182866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cavitation bubble dynamics and shock wave generation in eye surgery using the pulsed neodymium:YAG laser].
    Vogel A; Hentschel W; Holzfuss J; Lauterborn W
    Klin Monbl Augenheilkd; 1986 Oct; 189(4):308-16. PubMed ID: 3807223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optodynamic characterization of shock waves after laser-induced breakdown in water.
    Petkovsek R; Mozina J; Mocnik G
    Opt Express; 2005 May; 13(11):4107-12. PubMed ID: 19495322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer.
    Veysset D; Мaznev AA; Pezeril T; Kooi S; Nelson KA
    Sci Rep; 2016 Dec; 6(1):24. PubMed ID: 28003659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy.
    Lackner M; Charareh S; Winter F; Iskra K; Rüdisser D; Neger T; Kopecek H; Wintner E
    Opt Express; 2004 Sep; 12(19):4546-57. PubMed ID: 19484006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced shock-wave-expanded nanobubbles in spherical geometry.
    Horvat D; Agrež V; Požar T; Starman B; Halilovič M; Petkovšek R
    Ultrason Sonochem; 2022 Sep; 89():106160. PubMed ID: 36116244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes.
    Martí-López L; Ocaña R; Porro JA; Morales M; Ocaña JL
    Appl Opt; 2009 Jul; 48(19):3671-80. PubMed ID: 19571922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic shock waves emitted from two interacting laser generated plasmas in air.
    Elle M; Guthikonda N; Shiva SS; Kiran PP
    J Acoust Soc Am; 2023 Mar; 153(3):1655. PubMed ID: 37002070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical imaging of shock waves produced by a high-energy electromagnetic transducer.
    Carnell MT; Alcock RD; Emmony DC
    Phys Med Biol; 1993 Nov; 38(11):1575-88. PubMed ID: 8272433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.