These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18285963)

  • 1. One-Dimensional, Time-Resolved Raman Measurements in a Sooting Flame made with 355-nm Excitation.
    Rabenstein F; Leipertz A
    Appl Opt; 1998 Jul; 37(21):4937-43. PubMed ID: 18285963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.
    Egermann J; Seeger T; Leipertz A
    Appl Opt; 2004 Oct; 43(29):5564-74. PubMed ID: 15508615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Line Laser-Induced Fluorescence Imaging of Vibrational Temperatures in a NO-Seeded Flame.
    Bessler WG; Hildenbrand F; Schulz C
    Appl Opt; 2001 Feb; 40(6):748-56. PubMed ID: 18357054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering measurements in flames using a tunable KrF excimer laser.
    Wehrmeyer JA; Cheng TS; Pitz RW
    Appl Opt; 1992 Apr; 31(10):1495-504. PubMed ID: 20720783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative 2D thermometry in turbulent sooting non-premixed flames using filtered Rayleigh scattering.
    Pu J; Sutton JA
    Appl Opt; 2021 Jul; 60(19):5742-5751. PubMed ID: 34263870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering.
    Rabenstein F; Leipertz A
    Appl Opt; 1997 Sep; 36(27):6989-96. PubMed ID: 18259572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering.
    Kearney SP; Schefer RW; Beresh SJ; Grasser TW
    Appl Opt; 2005 Mar; 44(9):1548-58. PubMed ID: 15813256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous temperature and sensitive two-species concentration measurements by single-shot CARS.
    Pealat M; Magre P; Bouchardy P; Collin G
    Appl Opt; 1991 Apr; 30(10):1263-73. PubMed ID: 20582137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame.
    Pitz RW; Wehrmeyer JA; Bowling JM; Cheng TS
    Appl Opt; 1990 May; 29(15):2325-32. PubMed ID: 20563170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator.
    Miller JD; Tröger JW; Engel SR; Seeger T; Leipertz A; Meyer TR
    Appl Opt; 2021 Jan; 60(1):98-108. PubMed ID: 33362084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved multispecies and temperature analysis in hydrogen flames.
    Reckers W; Hüwel L; Grünefeld G; Andresen P
    Appl Opt; 1993 Feb; 32(6):907-24. PubMed ID: 20802766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous vibrational and pure rotational coherent anti-stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames.
    Brackmann C; Bood J; Bengtsson PE; Seeger T; Schenk M; Leipertz A
    Appl Opt; 2002 Jan; 41(3):564-72. PubMed ID: 11905583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame.
    Bohlin A; Kliewer CJ
    J Phys Chem Lett; 2015 Feb; 6(4):643-9. PubMed ID: 26262480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-wavelength single laser CH and CH(4) imaging in a lifted turbulent diffusion flame.
    Namazian M; Schmitt RL; Long MB
    Appl Opt; 1988 Sep; 27(17):3597-600. PubMed ID: 20539426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements.
    Jonuscheit J; Thumann A; Schenk M; Seeger T; Leipertz A
    Appl Opt; 1997 May; 36(15):3253-60. PubMed ID: 18253333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.
    Vestin F; Nilsson K; Bengtsson PE
    Appl Opt; 2008 Apr; 47(11):1893-901. PubMed ID: 18404188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy.
    Zhang D; Gao Q; Li B; Zhu Z; Li Z
    Opt Express; 2019 Feb; 27(3):2159-2169. PubMed ID: 30732257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ investigation of laser-induced ignition and the early stages of methane-air combustion at high pressures using a rapidly tuned diode laser at 2.55 microm.
    Lackner M; Forsich C; Winter F; Kopecek H; Wintner E
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Nov; 59(13):2997-3018. PubMed ID: 14583276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.