These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18285997)

  • 1. Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication.
    Takino H; Shibata N; Itoh H; Kobayashi T; Tanaka H; Ebi M; Yamamura K; Sano Y; Mori Y
    Appl Opt; 1998 Aug; 37(22):5198-210. PubMed ID: 18285997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.
    Takino H; Yamamura K; Sano Y; Mori Y
    Appl Opt; 2012 Jan; 51(3):401-7. PubMed ID: 22270670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of small complex-shaped optics by plasma chemical vaporization machining with a microelectrode.
    Takino H; Shibata N; Itoh H; Kobayashi T; Nemoto K; Fujii T; Goto N; Yamamura K; Sano Y; Mori Y
    Appl Opt; 2006 Aug; 45(23):5897-902. PubMed ID: 16926877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of optics by use of plasma chemical vaporization machining with a pipe electrode.
    Takino H; Shibata N; Itoh H; Kobayashi T; Yamamura K; Sano Y; Mori Y
    Appl Opt; 2002 Jul; 41(19):3971-7. PubMed ID: 12099608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication.
    Takino H; Yamamura K; Sano Y; Mori Y
    Appl Opt; 2010 Aug; 49(23):4434-40. PubMed ID: 20697447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic abrasive machining system for optical fabrication with 0.1-mm spatial resolution.
    Matsuzawa Y; Hiraguri K; Hashizume H; Mimura H
    Rev Sci Instrum; 2022 Jan; 93(1):013101. PubMed ID: 35104977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a Liquid-Phase Electrode for Micro-Electro-Discharge Machining.
    Huang R; Yi Y; Zhu E; Xiong X
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics for electrochemical machining with nanoscale voltage pulses.
    Lee ES; Back SY; Lee JT
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3424-32. PubMed ID: 19504864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal Modeling and Experimental Verification of Magnetorheological Polishing Fused Silica Glass.
    Zhang L; Li W; Zhou J; Lu M; Liu Q; Du Y; Yang Y
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components.
    Markillie GA; Baker HJ; Villarreal FJ; Hall DR
    Appl Opt; 2002 Sep; 41(27):5660-7. PubMed ID: 12269566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres.
    Suratwala T; Steele R; Feit M; Dylla-Spears R; Desjardin R; Mason D; Wong L; Geraghty P; Miller P; Shen N
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25489745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined Chemical Etching for Electrochemical Machining with Nanoscale Accuracy.
    Zhan D; Han L; Zhang J; Shi K; Zhou JZ; Tian ZW; Tian ZQ
    Acc Chem Res; 2016 Nov; 49(11):2596-2604. PubMed ID: 27668827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting.
    Jang HS; Cho MW; Park DS
    Sensors (Basel); 2008 Feb; 8(2):700-710. PubMed ID: 27879730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications.
    Hirano T; Osaka T; Sano Y; Inubushi Y; Matsuyama S; Tono K; Ishikawa T; Yabashi M; Yamauchi K
    Rev Sci Instrum; 2016 Jun; 87(6):063118. PubMed ID: 27370437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-beam machining of millimeter scale optics.
    Shanbhag PM; Feinberg MR; Sandri G; Horenstein MN; Bifano TG
    Appl Opt; 2000 Feb; 39(4):599-611. PubMed ID: 18337932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of ultrathin and highly uniform silicon on insulator by numerically controlled plasma chemical vaporization machining.
    Sano Y; Yamamura K; Mimura H; Yamauchi K; Mori Y
    Rev Sci Instrum; 2007 Aug; 78(8):086102. PubMed ID: 17764362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.
    Maruyama K; Ohkawa H; Ogawa S; Ueda A; Niwa O; Suzuki K
    Anal Chem; 2006 Mar; 78(6):1904-12. PubMed ID: 16536427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.
    Shervani-Tabar MT; Seyed-Sadjadi MH; Shabgard MR
    Ultrasonics; 2013 Jan; 53(1):203-10. PubMed ID: 22784706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-smooth surface fabrication technique and experimental research.
    Zhang L; Wang J; Zhang J
    Appl Opt; 2012 Sep; 51(27):6612-7. PubMed ID: 23033032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study.
    Luo M; Liu D; Luo H
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27626424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.