These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18286038)

  • 1. Satellite-sensor calibration verification with the cloud-shadow method.
    Reinersman PN; Carder KL; Chen FI
    Appl Opt; 1998 Aug; 37(24):5541-9. PubMed ID: 18286038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance.
    Wang M
    Appl Opt; 2006 Jun; 45(17):4122-8. PubMed ID: 16761054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.
    Wang M
    Opt Express; 2016 May; 24(11):12414-29. PubMed ID: 27410156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric correction of vegetation reflectance with simulation-trained deep learning for ground-based hyperspectral remote sensing.
    Qamar F; Dobler G
    Plant Methods; 2023 Jul; 19(1):74. PubMed ID: 37516859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past.
    Hu C; Feng L; Lee Z; Davis CO; Mannino A; McClain CR; Franz BA
    Appl Opt; 2012 Sep; 51(25):6045-62. PubMed ID: 22945151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of 6SV to remove skylight reflected at the air-water interface: Application to atmospheric correction of Landsat 8 OLI imagery in inland waters.
    Lu Z; Li J; Shen Q; Zhang B; Zhang H; Zhang F; Wang S
    PLoS One; 2018; 13(8):e0202883. PubMed ID: 30142203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation study of the SeaWiFS oxygen A-band absorption correction: comparing the retrieved cloud optical thicknesses from SeaWiFS measurements.
    Wang M
    Appl Opt; 1999 Feb; 38(6):937-44. PubMed ID: 18305695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability.
    Toole DA; Siegel DA; Menzies DW; Neumann MJ; Smith RC
    Appl Opt; 2000 Jan; 39(3):456-69. PubMed ID: 18337915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response.
    Gordon HR
    Appl Opt; 1995 Dec; 34(36):8363-74. PubMed ID: 21068957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.
    Datla R; Weinreb M; Rice J; Johnson BC; Shirley E; Cao C
    J Res Natl Inst Stand Technol; 2014; 119():235-55. PubMed ID: 26601030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect.
    Reinersman PN; Carder KL
    Appl Opt; 1995 Jul; 34(21):4453-71. PubMed ID: 21052279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflectance-based calibration of SeaWiFS. II. Conversion to radiance.
    Barnes RA; Zalewski EF
    Appl Opt; 2003 Mar; 42(9):1648-60. PubMed ID: 12665095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor-based clear and cloud radiance calculations in the community radiative transfer model.
    Liu Q; Xue Y; Li C
    Appl Opt; 2013 Jul; 52(20):4981-90. PubMed ID: 23852214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of atmospheric effects from satellite imagery of the oceans.
    Gordon HR
    Appl Opt; 1978 May; 17(10):1631-6. PubMed ID: 20198035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.
    Nguyen HC; Jung J; Lee J; Choi SU; Hong SY; Heo J
    Sensors (Basel); 2015 Jul; 15(8):18865-86. PubMed ID: 26263996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Solar Ultraviolet Environment at the Ocean.
    Mobley CD; Diffey BL
    Photochem Photobiol; 2018 May; 94(3):611-617. PubMed ID: 29315607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irradiance Restoration Based Shadow Compensation Approach for High Resolution Multispectral Satellite Remote Sensing Images.
    Han H; Han C; Huang L; Lan T; Xue X
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.