These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18286114)

  • 1. Achromatic fourier transforming properties of a separated diffractive lens doublet: theory and experiment.
    Tajahuerce E; Climent V; Lancis J; Fernández-Alonso M; Andrés P
    Appl Opt; 1998 Sep; 37(26):6164-73. PubMed ID: 18286114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-diffractive achromatic Fourier-transform setup.
    Lancis J; Andrés P; Furlan WD; Pons A
    Opt Lett; 1994 Mar; 19(6):402-4. PubMed ID: 19829655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White-light Fourier transformer with low chromatic aberration.
    Andrés P; Lancis J; Furlan WD
    Appl Opt; 1992 Aug; 31(23):4682-7. PubMed ID: 20725478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achromatic optical fourier transformer with planar-integrated free-space optics.
    Mínguez-Vega G; Gruber M; Jahns J; Lancis J
    Appl Opt; 2005 Jan; 44(2):229-35. PubMed ID: 15678775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband space-variant Fresnel processor.
    Mínguez-Vega G; Lancis J; Tajahuerce E; Climent V; Caraquitena J; Andrés P
    Opt Lett; 2002 Nov; 27(21):1926-8. PubMed ID: 18033404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achromatic waveguide lenses.
    Spaulding KE; Morris GM
    Appl Opt; 1991 Jun; 30(18):2558-69. PubMed ID: 20700244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband achromatic imaging with diffractive photon sieves.
    Zhao X; Hu J; Lin Y; Xu F; Zhu X; Pu D; Chen L; Wang C
    Sci Rep; 2016 Jun; 6():28319. PubMed ID: 27328713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength-compensated Fourier and Fresnel transformers: a unified approach.
    Lancis J; Mínguez-Vega G; Tajahuerce E; Fernández-Alonso M; Climent V; Andrés P
    Opt Lett; 2002 Jun; 27(11):942-4. PubMed ID: 18026331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction theory for an achromatic Fourier transformation.
    Morris GM
    Appl Opt; 1981 Jun; 20(11):2017-25. PubMed ID: 20332876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion tuning with a varifocal diffractive-refractive hybrid lens.
    Harm W; Roider C; Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Mar; 22(5):5260-9. PubMed ID: 24663866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low chromatic Fresnel lens for broadband attosecond XUV pulse applications.
    Pan H; Späth C; Guggenmos A; Chew SH; Schmidt J; Zhao QZ; Kleineberg U
    Opt Express; 2016 Jul; 24(15):16788-98. PubMed ID: 27464132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffractive tunable lens for remote focusing in high-NA optical systems.
    Bawart M; May MA; Öttl T; Roider C; Bernet S; Schmidt M; Ritsch-Marte M; Jesacher A
    Opt Express; 2020 Aug; 28(18):26336-26347. PubMed ID: 32906907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic compensation of broadband light diffraction: ABCD-matrix approach.
    Lancis J; Mínguez-Vega G; Tajahuerce E; Climent V; Andrés P; Caraquitena J
    J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1875-85. PubMed ID: 15497415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of achromatic doublet on glass Fresnel lenses for concentrator photovoltaics.
    Vallerotto G; Victoria M; Jost N; Askins S; Domínguez C; Herrero R; Antón I
    Opt Express; 2021 Jun; 29(13):20601-20616. PubMed ID: 34266146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatic compensation in the near-field region: shape and size tunability.
    Mínguez-Vega G; Fernández-Alonso M; Tajahuerce E; Lancis J; Jaroszewicz Z; Andrés P
    Appl Opt; 2005 Nov; 44(32):6933-9. PubMed ID: 16294969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material selection for GRIN-based achromatic doublets.
    Beadie G; Mait JN
    Opt Express; 2019 Jun; 27(13):17771-17794. PubMed ID: 31252732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral properties of multiorder diffractive lenses.
    Faklis D; Morris GM
    Appl Opt; 1995 May; 34(14):2462-8. PubMed ID: 21052381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient broadband double-sided Fresnel lens for THz range.
    Sypek M; Makowski M; Hérault E; Siemion A; Siemion A; Suszek J; Garet F; Coutaz JL
    Opt Lett; 2012 Jun; 37(12):2214-6. PubMed ID: 22739859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White-light optical implementation of the fractional fourier transform with adjustable order control.
    Tajahuerce E; Saavedra G; Furlan WD; Sicre EE; Andrés P
    Appl Opt; 2000 Jan; 39(2):238-45. PubMed ID: 18337891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focusing and spectral characteristics of periodic diffractive optical elements with circular symmetry under femtosecond pulsed illumination.
    Mendoza-Yero O; Mínguez-Vega G; Lancis J; Climent V
    J Opt Soc Am A Opt Image Sci Vis; 2007 Nov; 24(11):3600-5. PubMed ID: 17975586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.