These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18286144)

  • 1. Frequency Stability at the Kilohertz Level of a Rubidium-Locked Diode Laser at 192.114 THz.
    Bruner A; Mahal V; Kiryuschev I; Arie A; Arbore MA; Fejer MM
    Appl Opt; 1998 Sep; 37(27):6410-4. PubMed ID: 18286144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D(2) absorption lines.
    Mahal V; Arie A; Arbore MA; Fejer MM
    Opt Lett; 1996 Aug; 21(16):1217-9. PubMed ID: 19876304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine.
    Arie A; Byer RL
    Appl Opt; 1993 Dec; 32(36):7382-6. PubMed ID: 20861952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency stabilization of an external-cavity diode laser to metastable argon atoms in a discharge.
    Douglas P; Maher-McWilliams C; Barker PF
    Rev Sci Instrum; 2012 Jun; 83(6):063107. PubMed ID: 22755615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-precision, accurate optical frequency reference using a Fabry-Perót diode laser.
    Chang H; Myneni K; Smith DD; Liaghati-Mobarhan HR
    Rev Sci Instrum; 2017 Jun; 88(6):063101. PubMed ID: 28667977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-stabilized 1520-nm diode laser with rubidium 5S(1/2) --> 7S(1/2) two-photon absorption.
    Chui HC; Liu YW; Shy JT; Shaw SY; Roussev RV; Fejer MM
    Appl Opt; 2004 Dec; 43(34):6348-51. PubMed ID: 15619848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 40 GHz mode-beating with 8 Hz linewidth and 64 fs timing jitter from a synchronized mode-locked quantum-dash laser diode.
    Maldonado-Basilio R; Latkowski S; Philippe S; Landais P
    Opt Lett; 2011 Aug; 36(16):3142-4. PubMed ID: 21847187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser.
    Bayrakli I
    Appl Opt; 2016 Mar; 55(9):2463-6. PubMed ID: 27140589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microresonator Brillouin laser stabilization using a microfabricated rubidium cell.
    Loh W; Hummon MT; Leopardi HF; Fortier TM; Quinlan F; Kitching J; Papp SB; Diddams SA
    Opt Express; 2016 Jun; 24(13):14513-24. PubMed ID: 27410604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency stabilization of a diode laser with a thin Cs-vapor cell.
    Fukuda K; Furukawa N; Hayashi S; Tachikawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):502-5. PubMed ID: 18238573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser.
    Kim EB; Lee WK; Park CY; Yu DH; Park SE
    Opt Express; 2010 May; 18(10):10308-14. PubMed ID: 20588885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-frequency synthesis at telecommunication wavelengths.
    Ahtee V; Merimaa M; Nyholm K
    Opt Express; 2009 Mar; 17(6):4890-6. PubMed ID: 19293920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comb-locked cavity ring-down saturation spectroscopy.
    Wang J; Sun YR; Tao LG; Liu AW; Hua TP; Meng F; Hu SM
    Rev Sci Instrum; 2017 Apr; 88(4):043108. PubMed ID: 28456258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodine stabilization of a diode laser in the optical communication band.
    Chui HC; Shaw SY; Ko MS; Liu YW; Shy JT; Lin T; Cheng WY; Roussev RV; Fejer MM
    Opt Lett; 2005 Mar; 30(6):646-8. PubMed ID: 15792004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and performance of offset phase locked single frequency heterodyned laser systems.
    Tulchinsky DA; Hastings AS; Williams KJ
    Rev Sci Instrum; 2016 May; 87(5):053107. PubMed ID: 27250392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-modulation spectroscopy of rubidium atoms with an AlGaAs diode laser.
    Nakanishi S; Ariki H; Itoh H; Kondo K
    Opt Lett; 1987 Nov; 12(11):864-6. PubMed ID: 19741897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 30 W, sub-kHz frequency-locked laser at 532 nm.
    Chen HZ; Liu XP; Wang XQ; Wu YP; Wang YX; Yao XC; Chen YA; Pan JW
    Opt Express; 2018 Dec; 26(26):33756-33763. PubMed ID: 30650808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.
    Danylov AA; Light AR; Waldman J; Erickson N
    Appl Opt; 2015 Dec; 54(35):10494-7. PubMed ID: 26836876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub 23 μHz instantaneous linewidth and frequency stability measurements of the beat note from an offset phase locked single frequency heterodyned Nd:YAG laser system.
    Tulchinsky DA
    Opt Express; 2017 Oct; 25(20):24119-24137. PubMed ID: 29041358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.