These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18286424)

  • 41. Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling?
    Landrin A; Bissery A; Kac G
    J Hosp Infect; 2005 Sep; 61(1):27-9. PubMed ID: 16009457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids.
    Simpson AT
    Appl Occup Environ Hyg; 2003 Nov; 18(11):865-76. PubMed ID: 14555439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.
    Reagen WK; Lindstrom KR; Thompson KL; Flaherty JM
    J Occup Environ Hyg; 2004 Sep; 1(9):559-69. PubMed ID: 15559328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Risk assessment of exposure to indoor aerosols associated with Chinese cooking.
    See SW; Balasubramanian R
    Environ Res; 2006 Oct; 102(2):197-204. PubMed ID: 16457802
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of air-handling system exhaust failure on dissemination pattern of simulant pathogen particles in a clinical biocontainment unit.
    Therkorn J; Drewry Iii D; Pilholski T; Shaw-Saliba K; Bova G; Maragakis LL; Garibaldi B; Sauer L
    Indoor Air; 2019 Jan; 29(1):143-155. PubMed ID: 30192402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methodology for identifying particle sources in indoor environments.
    Gudmundsson A; Löndahl J; Bohgard M
    J Environ Monit; 2007 Aug; 9(8):831-8. PubMed ID: 17671664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles.
    Schmoll LH; Peters TM; O'Shaughnessy PT
    J Occup Environ Hyg; 2010 Sep; 7(9):535-45. PubMed ID: 20614365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phenyl mercuric acetate (PMA): mercury-bearing flexible gymnasium floors in schools--evaluation of hazards and controlled abatement.
    Beaulieu HJ; Beaulieu S; Brown C
    J Occup Environ Hyg; 2008 Jun; 5(6):360-6. PubMed ID: 18365889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Airborne bacteria concentrations and related factors at university laboratories, hospital diagnostic laboratories and a biowaste site.
    Hwang SH; Park DU; Ha KC; Cho HW; Yoon CS
    J Clin Pathol; 2011 Mar; 64(3):261-4. PubMed ID: 21212058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of bioaerosols during manual mail unpacking and sorting.
    Brandl H; Bachofen R; Bischoff M
    J Appl Microbiol; 2005; 99(5):1099-107. PubMed ID: 16238740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A near real-time system for continuously monitoring airborne subtilisin-type enzymes in the industrial atmosphere.
    Rowell FJ; Sykes D; Grieveson L; Theaker B; Sundar L; Cumming RH
    J Environ Monit; 2007 Jan; 9(1):33-43. PubMed ID: 17213940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of isocyanates in air using 1-(2-methoxyphenyl)piperazine-impregnated filters: long-term sampling performance and field comparison with impingers with dibutylamine.
    Sennbro CJ; Ekman J; Lindh CH; Welinder H; Jönsson BA; Tinnerberg H
    Ann Occup Hyg; 2004 Jul; 48(5):415-24. PubMed ID: 15240338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Occupational exposure and indoor air quality monitoring in a composting facility.
    Heida H; Bartman F; van der Zee SC
    Am Ind Hyg Assoc J; 1995 Jan; 56(1):39-43. PubMed ID: 7872202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endotoxin concentration in modern animal houses in southern Bavaria.
    Schierl R; Heise A; Egger U; Schneider F; Eichelser R; Neser S; Nowak D
    Ann Agric Environ Med; 2007; 14(1):129-36. PubMed ID: 17655190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of airborne viruses in a pediatrics department measured using real-time qPCR coupled to an air-sampling filter method.
    Tseng CC; Chang LY; Li CS
    J Environ Health; 2010 Nov; 73(4):22-8. PubMed ID: 21133312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exposure to culturable airborne bioaerosols during noodle manufacturing in central Taiwan.
    Tsai MY; Liu HM
    Sci Total Environ; 2009 Feb; 407(5):1536-46. PubMed ID: 19062076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.
    Creely KS; Hughson GW; Cocker J; Jones K
    Ann Occup Hyg; 2006 Aug; 50(6):609-21. PubMed ID: 16731584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Particle release from respirators, part I: determination of the effect of particle size, drop height, and load.
    Birkner JS; Fung D; Hinds WC; Kennedy NJ
    J Occup Environ Hyg; 2011 Jan; 8(1):1-9. PubMed ID: 21132594
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Well-designed air control systems diminish exposure to lead and acid.
    Minor C
    Occup Health Saf; 1994 May; 63(5):109-11, 115. PubMed ID: 9156440
    [No Abstract]   [Full Text] [Related]  

  • 60. Assessment of exposure in epidemiological studies: the example of silica dust.
    Dahmann D; Taeger D; Kappler M; Büchte S; Morfeld P; Brüning T; Pesch B
    J Expo Sci Environ Epidemiol; 2008 Sep; 18(5):452-61. PubMed ID: 18059424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.