BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 18286623)

  • 21. Corrosion behaviour of a beta-titanium alloy.
    Martin E; Manceur A; Polizu S; Savadogo O; Wu MH; Yahia L
    Biomed Mater Eng; 2006; 16(3):171-82. PubMed ID: 16518016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.
    Ren Y; Babaie E; Lin B; Bhaduri SB
    Biomed Mater; 2017 Aug; 12(4):045026. PubMed ID: 28604359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion.
    Jang Y; Collins B; Sankar J; Yun Y
    Acta Biomater; 2013 Nov; 9(10):8761-70. PubMed ID: 23535231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid.
    Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z
    Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.
    Törne K; Örnberg A; Weissenrieder J
    Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.
    Trinidad J; Arruebarrena G; Marco I; Hurtado I; Sáenz de Argandoña E
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1301-11. PubMed ID: 24048076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution.
    Metikos-Huković M; Pilić Z; Babić R; Omanović D
    Acta Biomater; 2006 Nov; 2(6):693-700. PubMed ID: 16884967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro and in vivo corrosion measurements of magnesium alloys.
    Witte F; Fischer J; Nellesen J; Crostack HA; Kaese V; Pisch A; Beckmann F; Windhagen H
    Biomaterials; 2006 Mar; 27(7):1013-8. PubMed ID: 16122786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.
    Yan XJ; Yang DZ
    J Biomed Mater Res A; 2006 Apr; 77(1):97-102. PubMed ID: 16392124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications.
    Mueller WD; Lucia Nascimento M; Lorenzo de Mele MF
    Acta Biomater; 2010 May; 6(5):1749-55. PubMed ID: 20051271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo corrosion of four magnesium alloys and the associated bone response.
    Witte F; Kaese V; Haferkamp H; Switzer E; Meyer-Lindenberg A; Wirth CJ; Windhagen H
    Biomaterials; 2005 Jun; 26(17):3557-63. PubMed ID: 15621246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.
    Pan YK; Chen CZ; Wang DG; Zhao TG
    Colloids Surf B Biointerfaces; 2013 Sep; 109():1-9. PubMed ID: 23603036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid.
    Monteiro MM; Campos da Rocha NC; Rossi AM; de Almeida Soares G
    J Biomed Mater Res A; 2003 May; 65(2):299-305. PubMed ID: 12734825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques.
    Bobby Kannan M; Singh RK
    J Biomed Mater Res A; 2010 Jun; 93(3):1050-5. PubMed ID: 19753621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.
    Yang X; Hutchinson CR
    Acta Biomater; 2016 Sep; 42():429-439. PubMed ID: 27397494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan.
    Gu XN; Zheng YF; Lan QX; Cheng Y; Zhang ZX; Xi TF; Zhang DY
    Biomed Mater; 2009 Aug; 4(4):044109. PubMed ID: 19671953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.
    Witecka A; Bogucka A; Yamamoto A; Máthis K; Krajňák T; Jaroszewicz J; Święszkowski W
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():59-69. PubMed ID: 27157728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31.
    Gray-Munro JE; Seguin C; Strong M
    J Biomed Mater Res A; 2009 Oct; 91(1):221-30. PubMed ID: 18814220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.